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Abstract

Ces notes ont été rédigées dans le cadre du séminaire d’analyse du LMNO/le 11 mai 2010 a
la demande d’Eric Lehman ; elles se proposent d’utiliser des diagrammes de Feynman en théorie
quantique des champs relativistes pour calculer quelques quelques processus simples du premier
ordre. On essaiera dans un premier temps de présenter les principes puis d’expliciter en détail les
calculs pour quelques applications choisies parmi les interactions électromagnétique et faibles.
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1 Introduction

Nous nous intéressons a des systémes quantiques qui au cours de I’expérience vont subir une transition
d’un état initial vers un état final sous I'action d’un mécanisme d’interaction (transformation d’un
état stationnaire vers un autre état stationnaire) ; cette interaction est :

e soit provoquée par une collision avec une cible

e soit spontanée et agit dés 'apparition du systéme initial

1. dans le premier cas , une section efficace sera mesurée (en cm?) ; qualitativement il s’agit d’une
mesure de la surface d’ombre faite par la cible au faisceau incident. Plus précisément, si le flux
total des particules incidentes est noté F dans le référentiel de la cible (en unité cm=2), la section
efficace est telle que celles des particules qui traverseront cette surface subiront 'interaction :

Nipy = oF ou Ny = oF (1)
Si 'on sélectionne les états finals , on introduira la section différentielle
do = F 'dNy

Le nombre de particules qui traversent une surface ds par unité de temps est le flux de du
vecteur densité de courant de particules j; a travers cette surface.

L dN'Lnt

dp = ji.ds avec j; = pU donc o= 5

2. Dans la définition précédente nous avons implicitement considéré un faisceau incident sur une
cible unique. On peut également considérer, une particule incidente unique se déplacant dans
un milieu homogéne de densité de cibles ps. La probabilité d’une interaction par unité de
longueur de trajectoire est liée a l'incidence de celle-ci sur les sections associées aux cibles
rencontrées soit :

dP

dx
Un raisonnement classique de probabilité permet d’en déduire la loi exponentielle pour la
probabilité P(z) d’observer la premiére interaction au dela de la distance x

—= p20'

P(z) = exp(—py 0 )

Le complément est la probabilité de n’avoir aucune interaction sur la distance x de trajectoire.
Enfin, la distribution de probabilité de la premiére interaction est évidemment

T (— )

= P90 €ex ox

- P2 pPl{—p2

3. Dans le second cas, on mesurera la durée de vie du systéme 7 = A~! et on en déduira la loi

exponentielle de survie au dela d’un temps t
P(t) = exp(— \t)
ainsi que la probabilité de transition par unité de temps
dP = Mt  ou  Niewy = ANy (2)

enfin, la distribution de probabilité de la premiére interaction qui est :

dP

o = A exp(—At)
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2 Principes de mécanique quantique

e Les postulats de la mécanique quantique

1. Un état de la physique microscopique (quantique), un atome en quelque sorte, est représenté
par un vecteur d’un espace de Hilbert approprié, H ; 'état peut étre défini par ses composantes
dans une base et le produit scalaire est un nombre C que 'on note

(p,)ou <¢|p>e€ C

Le produit ci-dessus est 'amplitude de ¢ dans 1. A cause de I'interprétation probabiliste des
amplitudes, il sera nécessaire de normaliser les états.

(V) =<y lip>=1

2. Chaque observable physique () est associée & un opérateur hermitien dans H dont les valeurs
propres ¢ sont les résultats possibles des mesures dans le cas d'une expérience idéale menée
avec des instruments parfaits.

les mesures de @ sont = {q1,q2,..- ¢, .-}

3. La probabilité de la mesure g de () est par principe le module carré de I'amplitude de ¢, dans

(4
Probde ¢ = |< ¢, |1 >

Dans le cas ou la valeur propre engendre un sous-espace , il sera nécessaire de sommer sur
la base du sous espace. Si 'on peut construire 'opérateur de projection | ¢ >< 1 | dans le
sous espace q alors la probabilité peut se calculer comme la trace dans le sous-espace de cet
opérateur :

Probdeq = ) <o |4 ><¢ [¢g>= Tr{|¢v>< v |}
¢

La somme des sous-espaces de () constitue une base de H.
La moyenne des mesures de Q est :

<Q>=) ql<d > =<v|Qv>

?, q

Remarque La probabilité de la mesure ¢ de () est aussi la moyenne de I’'opérateur de projection

Pg) sur le sous-espace q.
Probdeq = <% | Py ¢ >

Exemple L’opérateur (Q est 'observable de position de I'"atome" dans I’espace physique R?
I’instant ¢.

Q=T

Soit | ¥y > un état propre : dans cet état, la mesure de la position de I'"atome" donne
systématiquement .

La probabilité de cette valeur dans v est par principe |< Ty | ¥ >|?. L’amplitude < 7y | ¢ >
est la fonction d’onde associée a I'état | ¢ > :

V@) =<i| p>e C
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4. Tétat du vide 1y est associé a I’élément neutre de H en effet amplitude ¢y (Z) est la fonction
0 car la probabilité de ’observation de I’atome est nulle V Z. Cependant le vide est un élément
non-nul de I’espace car sa norme est 1.

Remarque L’opérateur a qui au vide fait correspondre 'état | & > est un opérateur de
création d’un "atome" en Z.

Cet opérateur peut agir sur un état quelconque de H, son action crée une particule en z.
L’opérateur hermitique conjugué a, est I’ opérateur d’annihilation :

af |0>=]z> = a|x>=[0>

en effet,

<0]a, =<uz|

<0laz|z>=<z|z>=1 = a; |z >=10>
Remarque Les opérateurs a; et a, ne sont pas hermitiens par contre a, a; est hermitien et
peut avoir une interprétation physique.

5. Il en résulte une autre interprétation de la fonction d’onde d’une particule :

() =<z| v>=<0| aup >€ C

6. Les particules identiques conduisent & des fonctions d’ondes qui ont des propriétés particuliéres
vis a vis des permutations , par exemple a deux particules

Y(z,y) =<0]| azay, v >¢€ C

- dans le cas des fermions les fonctions d’ondes sont impaires par transposition et il en
résulte que les opérateurs de création ou d’annihilation anticommutent entre eux

{az,a,} = 0 {ag,af} =0

avec
{az,af} = 1  plus généralement {ag,a} = 04y

- inversement pour les bosons
_ + 1 —
lag,a)] = 0 lal,a] =0

avec
las,af] = 1 plus généralement a2, 0] = Oay

7. Comptage des particules dans un état quelconque
Lemme : Il découle des relations de commutation (anti-commutation) des bosons (fermions )
les relations suivantes

az(a)" = [ag, (a)(a)" ™" £ afaz (o)~
supposons [a,,a)] = (aza} Fafa,) = b ( ci-dessus b = 1)

az(af)" = (b+ (£)b+b+ (£)b..)(a))" + ()" (a})a,

afa, [n>= (b+(£)b+b+ ()b ..)|n>

Conclusion a}a, est un opérateur qui compte les particules en z. Pour les bosons, les valeurs
propres sont n € N pour les fermions les valeurs sont 0, 1.
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3 L’équation de Schrodinger

e L’équation d’évolution et I’équation de Dyson
1. L’évolution d’une fonction d’onde obéit a I’équation de Schrodinger qui fait intervenir 'opérateur
de Hamilton H et qui apparait comme le générateur des déplacements dans le temps :

)
i = M X (3)

Dans la représentation z, I’équation de Schrodinger prend la forme d’une équation différentielle
sur les fonctions d’onde de I'espace temps.

ih%@b(f,t) = H (T, 1) avec Y(T,t) = < 7| ¥(t) >

L’opérateur d’évolution qui transforme I’état initial du systéme a ty vers I’état a ¢ est unitaire
et s’écrit :

. t
Ult,ty) = exp(—% / H dt)
to

2. _Le lien avec la physique classique : le théoréme d’Ehrenfest prévoit que les valeurs moyennes
des observables vérifient une équation qui est analogue aux équations de Hamilton en mécanique

classique :
d<Q> 1 Q)
— _<h[H,Q]>+< 5
en mécanique classique cette équation devient
Q@ oQ
dt - [Ha Q]Pozsson + 815
avee IHOQ OHOIQ
[H7 Q]Poisson = a_pa_q - 8_qa_q
Application

h =
Q=p = ZVet'H:Ho—i—th

_ 6‘/1'nt

Mécanique classique  p; = B
J

Mécanique quantique % <p;j>= —< %[pj, Vint] > = — < V;Vipe >

3. _Les constantes du mouvement : Sil’état initial est propre de I'opérateur Q, si Q est indépen-
dant du temps et commute avec H, la valeur propre est une constante du mouvement. Les
exemples sont nombreux : ‘H lui méme, la quantité de mouvement totale, les charges conservées,
le moment cinétique...

4. Les états stationnaires : Ils sont propres de 'hamiltonien H :

Hly>= Ely>

Dans ces états, les valeurs moyennes ou les valeurs propres de tous les observables sont des
constantes au cours du temps, c’est la raison pour laquelle on les appelle états stationnaires.

vVQ <Q>= (Cte Vit
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Exemple :

<i>=ad <p>=b < H>= FE
Les états stationnaires possibles physiquement peuvent étre classés par rapport aux valeurs
propres des opérateurs qui commutent avec H et qui commutent entre eux. Ces valeurs propres
s’appellent nombres quantiques ; la connaissance de ces valeurs permettra de faire ’inventaire
du possible.
Un ensemble complet d’observables de cette nature conduit par principe a générer une base de
I’espace de Hilbert du systéme.

5. L’équation de Dyson Pour étudier une transition entre un état (initial) sans interaction et
un autre état sans interaction (final), on peut formellement isoler I'opérateur d’interaction dans
I’hamiltonien

H = Ho+H
En effectuant un changement d’état ¥ () ,

v(t) — 9(6) = eply Ho 1) v(0)

on peut réécrire I’équation d’évolution de Dyson soit

o - B,

ih@iﬂ(ﬂ = Hy(t) x ¥(t)

avec Hi(t) = exp(% Ho t)Hiexp(—+ Ho t)

Remarque : s'il n'y a pas d’interaction alors @(t) est constant, égal a ¥ (0).

La solution de I’ équation de Dyson peut s’écrire sous forme exponentielle en introduisant
Popérateur d’ordonnancement dans le temps 7 qui est nécessaire ici a cause de I’éventuelle non
commutativité des opérateurs d’interaction a t.

Ult,to) = Texp(—% /t ) db)

6. Généralisation relativiste : Introduction de la densité d’hamiltonien et matrice S
Dans le cas d’une transition , I’état initial comme 1’état final sont "sans interaction" : les
particules sont libres car éloignées les unes des autres a des distances macroscopiques ; il s’agit
de déterminer une probabilité pour une transition qui résulte d’une interaction "microscopique"
et quantique. Pour remplir ce programme, on introduit une densité d’interaction dans I’espace
temps Hini(z) dont il peut résulter la transition observée. L’opérateur d’évolution pourra se
mettre sous la forme

S = Texp(—%/ Hint(7) d*z)  ou mieux = Texp(+%/ Li(z) d*z) (4

par exemple référence [2] page 351-353
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Dans ce formalisme de la théorie des champs,

e [’opérateur 7 garantit la causalité relativiste des processus pouvant intervenir aux dif-
férents points de ’espace temps. Les relations entre les différents points sont limitées par
la causalité relativiste.

e Les interactions sont ponctuelles , le formalisme est local dans R*.

e Les points définissent un chemin qui permet de passer de I’état initial a ’état final grace
aux interactions .

e Entre les interactions ’évolution est libre

e L’espace de Fock des états macroscopiques entrants et sortants

Pour des raisons pratiques, ces états sont composés de particules dont les quadri-impulsions
sont déterminées par "la préparation” de ’état initial ot par la détection dans I’état final.
Ces états sont indéterminés dans I'espace temps.

Les processus physiques de mesure et de détection se situent a 1’échelle macroscopique
ou les différents constituants (particules) évoluent quasi-librement, sans interaction. Ces
états appartiennent a I'espace de Fock de la théorie, ils sont construits comme des états
de particules libres dont les caractéristiques quantiques sont déterminées. Mathématique-
ment, I’espace de Fock est I'espace de Hilbert obtenu par la somme directe des produits
d’espaces de Hilbert a une particule.

4 Les champs quantiques libres

Soit a étudier une onde bosonique dont la quantité de mouvement est fixée, ce peut étre une
fonction d’onde propre de 'opérateur quantité de mouvement :

_ho
b= i Ox

Soit le vecteur d’onde k , sa dimension est 'inverse d’une longueur
)

o(r) =<xz|¢p> €C propre de

k=1L
h

Par TF et son inverse , on obtient :

oK) = / b(x) explike) 'z oz) = (2m)" / o(k) exp(—ikz) d'k

L’équation de Klein-Gordon impose des limitations

(k* —m?) ¢(k) = 0soit ¢(k) = 0saufsi  k° = +wy, avec wy, = \/ k2 + m?
Donc on pourra décomposer ¢ de la maniére suivante :
d(k) = 2m o(k* —m?)[O(K")o" (k) + 0(—k")¢~ (k)]
alors

o) = | % S 6 (8) exp(=ike) + 97(—K) exp(iho)

kx = wkko—lgfet wk:\/E2+m2

avec
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Jusqu’ici 'onde est une fonction d’onde définie sur R voire sur C'. La seconde quantification trans-
forme cette fonction en opérateur par l'introduction d’opérateurs de création et annihilation d’états
caractérisés par k. alors

oa) = [ s grla) expl=ika) +a* (k) exp(iko)

avec le commutateur (ou 'anticommutateur)

[a(k),a™ (k)] ou {a(k),a™(K)} = (27)* 2wy 6°(k — k')
référence [2] pages : 363 365 366 puis 370
5 L’amplitude d’une transition

Comme nous l'avons indiqué dans l'introduction , on va s’intéresser a des transitions entre un
état initial constitué de particules libres , identifiées macroscopiquement et donc éloignées les unes
des autres et un état final de méme nature par exemple dans les réactions suivantes qui ont été
effectivement abondamment étudiées dans les années 1960 :

p+n—p+n p+n—p+n+m° int. forte
e +p—e +n+at Yy+p—on+nt int. électromagnétique
v,+e —u,+e” vyt+e —u + e int. faible

Ces exemples sont choisis pour mettre en évidence les trois interactions qui se manifestent a I’échelle
microscopique, I'interaction forte , électromagnétique et faible.

Nous considérerons dans le méme cadre les désintégrations des particules ; dans ce cas , I'état
entrant est composé d’une seule particule dont la durée de vie est assez longue pour qu’elle puisse
étre identifiée. Les interactions propres ou internes de cette particules (self interaction) vont conduire
a sa désintégration en un autre systéme de particules éventuellement stables et détectées a I’échelle
macroscopique. Nous considérons que ’état initial et I’état final seront libres des interactions internes
qui conduisent a la transition. Citons quelques exemples

AT —n+ 70 P — Tt int. forte
Y0 - A4y =2y / y+et+e int. électromagnétique
Tt —ut+u, n—pt+e +1, int. faible

e L’amplitude de probabilité
Par principe, ce qui est accessible a I’expérimentation est la probabilité de la transition entre un
état initial (de Fock) vers un autre état de cet espace. Par principe de la mécanique quantique,
cette probabilité peut s’obtenir en calculant le module au carré de 'amplitude de la transtion
qui est un produit scalaire dans I’espace de Fock. La dynamique est contenue dans 'opérateur
de "scattering" S, les amplitudes de transition sont données par les éléments de S .

A = <ﬁf‘(5 |i:> ::(Sﬁi = 5ﬂi——i T}J

avec

s = 1+% i Lons(2)] d%—i—%?’ / i Long(@)] [ Loml(y)] d'y d'... (5)
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e la quadri-impulsion et sa conservation
Evidemment, tous les états finals ne sont pas accessibles, ils sont limités par les lois de con-
servation liées aux invariances ; par exemple 'invariance par rapport aux translations d’espace
temps qui conduit a la conservation de I’énergie impulsion de I’état initial a I’état final.

Ypi =% pﬁi p=0123

Dans I’état initial comme dans I’état final, I’énergie impulsion totale est la somme des contri-
butions individuelles des particules libres. On écrira :

Ty = (2m)*6"(S pi — S py) My, (6)

M est appelée amplitude de transition réduite : les processus quantiques doivent pouvoir se
calculer a partir de cette fonction :

états 7, [ — My,

Par application des principes de la mécanique quantique , la probabilité de la transition ¢ — f
sera liée au module au carré de I’ amplitude de transition :

Prob (i, f) o<| T},

2= VT @2n)'' (S pi—-Spy) | My (7)

e l'incertitude sur I’état final
La physique microscopique n’est pas déterministe , I’état final est variable et la détermination
de probabilités est 'objectif de toute entreprise expérimentale ot théorique dans le cadre d’une
dynamique quantique.

Il apparait que certaines transitions sont interdites et historiquement les progrés réalisés a
travers ces interdictions ont été plus importants que ceux qui sont venus des transitions per-
mises.

Exemple : quelques réactions interdites

p+p— Kt +7~ int. forte
et +e — 1y int. électromagnétique
n—p+e- int. faible

6 Les symétries

Considérons formellement une opération de symétrie spaciale ou interne qui laisse l'interaction
L(z)d*z invariante ; soit U cette opération que 1’on prendra unitaire. Cette invariance se traduit par

Ut Lipy(x) d*2U = L

wnt

(2")d*a" = Liy(v)d*x

De proche ne proche l'opérateur S est invariant dans 'opération U . Cette symétrie s’applique
également dans l'espace de Fock des états libres entrants et sortants ; il en résulte que les amplitudes
sont invariantes.

A=<f|S|li>=<Uf|S|Ui>
Exemple : U est 'opérateur de translation d’espace temps

Va U(a) = exp(ipa)



7 DES PROBABILITES AUX SECTIONS EFFICACES ET DUREES DE VIE 13

ou p est 'opérateur de quadri-impulsion totale du systéme.
Reprenant I'expression de S sous forme perturbative (équation [5)), il est possible d’écrire 'amplitude
en fixant une origine aux interactions et effectuant une translation = arbiraire :

S = Ut) (1+% i Ly (0) +%T / (i Lo (O)] [i Line(w)] dy > U(x)d'z

Dans les états initials et finals (espace de Fock macroscopique) les quantités de mouvement sont
déterminées, il s’en suit que 'amplitude fait apparaitre explicitement la conservation de la quadri-
impulsion comme dans 1’équation 6/ :

Spi = [exp(ilpy — pi)x) dx

X < f1 (U457 [ Lan(0)] + 5T [ [i Line(0)] [i Line(y)] d'y ...) [ >

Le méme raisonnement s’applique aux autres symétries qui s’observent a 1’échelle macroscopique
comme le résultat de propriétés microscopiques, exemples : transformations de Lorentz, parité,
conjugaison de charge, U(1), SU(2) etc...

7 Des probabilités aux sections efficaces et durées de vie

Considérons a nouveau la formule qui définit la section efficace, équation 1, ou la durée de vie,
équation 2. Il est évident que le nombre de transitions observées pendant I'expérience dépend du
nombre de particules entrées en collision , il y a donc une question de normalisation pour passer aux
probabilités.

Par ailleurs, 'amplitude se transition dépend de la normalisation des états initials et finals , de plus
la sommation sur les états finals suppose la normalisation de chaque état.

7.1 Conventions

Liste de nos conventions
e Les indice d’espace-temps sont = 0,1,2,3 ; la métrique g est telle que g,, =1, -1, -1, —1.
e Les unités sont telles que A =1 et ¢ = 1. De plus, en I'électromagnétisme, on choisira :

e e
pr— 1 p— p— pr— —_—NY
“ Hoo & = reohe 4z 137.0.

e La charge électronique sera négative et notée e = — | e |
e L’impulsion d’une particule libre est notée p éventuellement p,, ;

e [’énergie positive d'une particule est w, = ++/p?> + m? ; I'énergie de I’état relativiste d’une
particule est £ = py = Zw,

e La normalisation des états d’impulsion p est choisie pour satisfaire a la relativité :

d Prob
= G @)o) = 2,

Par exemple, voir la référence [1] page 88 ou l'annexe 1. Le courant de particules libres est un
quadrivecteur conservé.
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e Les transformations de Fourier de ’espace physique x vers ’espace réciproque ¢
fla) = @07 [emp-ian)fta) da fa) = [ eaptign)fa) da ®

7.2 Sections efficaces

Soit la réaction
a+b— f

Dans le laboratoire, b est la cible et a est le projectile. Avec nos conventions,

e le flux total des particules incidentes est

Fo = T (2wavy)

e le nombre des cibles est
Nb =V (2(4)1))

e le nombre de transitions observées est IV;

Ni = oy FulNy = | Ty |

En application de I’équation 7' et dans le cadre nos conventions, la section efficace et 'amplitude
quantique sont liées par ’équation suivante :

Tiotale = F ! Z (2#)454(2 pi — X pr)X | Mg, |2 avec F = (2wyp)(2w,v,) 9)
f

On montre

F = Hpa-m)® = (mamp)*)? = /(s = (ma +my)?)(s — (mg —1m1)2) (10)

7.3 Durées de vie

Soit la désintégration
a— f

De la méme facon, la probabilité de transition par unité de temps est :

Atotale = fil Z (27T)464(E bi — D pf)x ’ Mf,l ’2 (11)
f
avec F = (2w,) dans le référentiel de la particule F = (2m,)

7.4 La somme sur les états finals

La mécanique quantique précise la densité d’états d’impulsion dans I’espace réciproque d’ un espace

physique de volume V
d3 /
zf: (états d'impulsion) = Il / m (12)
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Exemple Si la réaction ne comporte que deux particules finales ¢ — ¢+ d dans le référentiel du
centre de masse on vérifie :

[ R0+ pa)d(ee + - E) e = f "
)0 Pe o Pa)olWe + wa = o) s0 o0, 4Ey

ou p'(p) est la quantité de mouvement commune des deux particules finales (initiales) et Ej est
I’énergie dans le CM notée parfois /s = Ej.

/
Catvmecrd lonr = F1-E (QW)_Q/ | My 2 dQ (14)
4F,

avec F = 4p Ej réf équationl(),

/

p L / 2
- N - 2 d
g, —+b +d ’CM p<87TEO) |Mf: |

pour la section élastique on aura :

usiaslow = [ F@P AR F@) = | o My (15)
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8 L’interaction électromagnétique

8.1 Diffusion Rutherford

référence

| e+ Z—e 127 |

La section efficace différentielle classique (voir référence ci-dessus) :

do ahe\ 2 1 1
—— < ) S (0/2) avec Fy = §mv§

ds? 4F

scattering
center

dQ

Figure 2: Diffusion Rutherford sur une cible ponctuelle

8.1.1 Démonstration en physique classique

Rappelons la formule de Rutherford :

0 2bE0 262 (16)
avec Kk =
2 K v 4meg

ot b est la paramétre d’impact et 6 'angle de diffusion
Remarque : 6 croit quand Z croit ou quand b décroit ce qui est attendu physiquement. La
démonstration la plus "physique" de cette formule peut étre faite par intégration des variations
d’impulsion :
oo o,
[ da = morE = 5-n = [ o
— 50 —00

En effet :

la loi des aires : dt = ™2 dp avec L = mugb

pr—0 = [T () f(t) do = K5 [ adde avec f(—o0) = met O(co0) = 6

avec pr —p; = m vo(cos(bp) + 1, sin(bp)) et © = (cos(), sin(0))

On en déduit sans difficulté la formule [16 ci-dessus

thttp:/ /en.wikipedia.org/wiki/Rutherford _Scattering
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8.1.2 Démonstration par la physique quantique

Soit & calculer la section efficace de diffusion d’un électron sur une charge Z | e | ponctuelle située
a lorigine du référentiel du laboratoire. Le diagramme de Feynman qui décrit cette transition est
présenté sur la figure 3.

Les étapes de la démonstration

e Le lagrangien libre de I’électron

e [’équation libre de Dirac

((py) —m)y(z) = 0
e L’interaction de I’électron avec un champ extérieur A, (principe d’interaction minimale)

((py) —e(Ay) =m)p(z) = 0

e(p) e(p")
Q

>X

A(q)

J(q) 3

Figure 3: Diagramme pour la diffusion Rutherford sur le courant J(q)

e La forme hamiltonienne de cette équation
oy (x) = [=i0°y + e’ (An) + 7" 'm]y(z)

donc pour l'interaction :

Hin(x) = e Au(@)’y" (17)
e L’amplitude de transition au premier ordre (figure 3)
Spi = =i [V (@) (Hia(2))¢p(w)d
= —i [exp(i(p' — p)x) Au(x)d'z X u(p')* (e 1*")u(p)

= —iAu(q) x u(p')(e v*)u(p)
q=17p—p et Au(q) = [ewxpligr) Au(x)d*x
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e Le champ de photons vituels rayonnés par la source J(x) (relations de Maxwell avec ¢ = 1)
oME,, = J,(z)
par transformation de Fourier , on obtient '’équation suivante sur le champ A,(q)
(—iq)* Ay — (—ig)u(—ig)" Au(a) = Ju(q)

Equation que 1’on peut écrire formellement
Aq) = [0 + wd"] " L)

e Dans le cas d’une charge électrique ponctuelle, la conservation du courant impose qu’elle soit
statique

—,

JH(z) = (Q §8°(x),0)
La transformée de Fourier du courant conduit a
Jq) = 276(¢")Q

Done 1
A%q) = o J(q) = 2m0(q°)

O

avec | 7% = 4p*sin?(0/2)

Remarque Le retour a ’espace ordinaire conduit a (par transformation de Fourier inverse)

1 Q

4| 7|

Ax) =

e [’amplitude de transition T%;

= 2m0(¢") % alp')) u(p)
Dans ce cas 'amplitude de transition (réduite) est :
Qe

My = Z u(p")7 u(p)

e Finalement, en prenant correctement en compte les normalisations , on calcule la section efficace
quantique au premier ordre coulombien en sommant le spin final et en moyennant sur le spin
initial si I’électron incident est non-polarisé :

v
o = .7-"‘1/27r6( Szm;wvtfz ﬁ (18)
avec F = 2wv = 2p.
e L’intégration sur d®p’ est simple & cause de la conservation de 1'énergie (¢° = 0)
o = f*1f27r% Zspin | My |? 27T3 g dSY

do = 50 (&) X i | 8 u(p) [* A
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e Enfin la somme sur les spins : Nous utilisons une formule connue des ondes planes de spineurs
par exemple dans la référence [1] page 123 :

> apin U@ Y ulp))* (u(p' )y ulp)) = Trlu(p)u@ )v*u(p)u(p)y”]
= Tr[((p) +m)y"((py) +m)y"] = 4@p"p” +p"p" — (('-p) — m*)g"”

D 1a@) ulp) P = 4w’ + pPeos(9) + m?] = 4[2w* + p*(cos(6) — 1)]

spin
Remarque Tr est la trace d’une matrice.

e Enfin on obtient la section différentielle de Mott (un fermion chargé sur une cible ponctuelle) :

do ([ Za ? [w? + pPcos(0) + m?] _ (Zaw > (1 — v2sin®(0/2))
dQ eite = <2p2> 2sin*(0/2) < 2p? > sin*(0/2)

(19)
A la limite non-relativiste on retrouve la section de Rutherford w ~ m et v ~ 0

- (425) smie/z) (20)

A la limite ultra-relativiste m ~0,v~1let w~p

do [ Za\* cos*(0/2)
o (%) sin(0/2) (21)

La section efficace a la dimension de F~2 ce qui est correct dans le systéme d’unité employé
ici, hcE~1 est une longueur qui décroit avec I'énergie .

Remarque : Retour aux unités macroscopiques pour faire une application numérique dans le
cas de I'expérience de Rutherford

a+ Au— a+ Au
avec Z = 2x 79 = 158 a = 1/137,0

Fo=p2/2M ~10 MeV M ~4,10° MV he = 197, 1075 MeVim
do = o9 x sin™40/2)dQ oy = 0,32107% cm? ~ barn

e Il est bien connu que la section efficace de Rutherford diverge & & = 0 ; ceci est di a la portée
infinie du potentiel coulombien. En réalité, le potentiel du noyau atomique est écranté par
les électrons de ’atome a une distance d de I'ordre de I’Angstrém ; donc, pour des valeurs de
| 7| = 2posin(0/2) inférieures a hd~"', la diffusion ne se produit plus.
en conséquence do = 0 pour les valeurs de 0 telles que

h
2po sin(0/2) < p soit 0 ~ 107° avec d ~ 107" m

Le parameétre "naturel" d’intégration de la section efficace est | 7| = 2pgsin(6/2) qui varie sur
Vintervalle [2, 2p]

e La structure nucléaire "apparait" pour les grandes valeurs de | ¢ | soit pour d ~ 107'° m | la
diffusion Rutherford est dite "anomale".
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9 La théorie quantique des champs (QED)

Les régles de Feynman permettent d’écrire 'amplitude de transition 7; pour un chemin donné
sous forme de graphe ; la contribution des vertex (points d’interaction) se déduit du lagrangien
d’interaction.

Pour QED on a :

Ling = —Q AF imﬂﬂ (JJ)

9.1 Reégles de Feynman pour QED

particule état intial propagateur état final

intégration d*p/(2m)*

fermion u(p) u(p)
i((py) —m)~!

antifermion v(p) v(p)

boson scalaire 1 i(p> —m?)~! 1

boson vectoriel €u (=P G + Py 0) €,

photon (jauge de Lorentz) € i (—p°) 7" €

Table 1: Reégles de Feynman issues du lagrangien libre des particules

interaction quantique (QED) —iQy"
conservation de p (27)40* (Pin — Pout)

combinatoire(niéme ordre) =

potentiel classique (équation &) —i70 V(q)

Table 2: Régles issues de L;,; pour les vertex

si S = Texp(+1 [ Liu(z) dz)
alors: Sy = dpi—i Ty Tre = 2m)* (2 pi — X py) My, enfin équations 911
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Remarque : application a la diffusion Rutherford (figure [3) référence [4] page 149.
— . v . U 1 d4q
Sy = [ a) =ier utr) 25 (=i 7(@)@r5'0 ~p = 0)
Avec Ji(q) = Oet J%q) = 275(¢°)Q avec Q = —Ze

Mo = (L) 010t b

Pour calculer la section efficace on reprend I’équation [18

Va)

Figure 4: Diffusion sur un potentiel

9.2 Diffusion d’un fermion de spin 1/2 sur une source de potentiel V()

’ a+X —d+X ‘

(p) +(9) = (1)
Soit & calculer la section efficace de la diffusion d’une particule de spin 1/2 sur le potentiel : par
I’application des regles de Feynman au graphe du premier ordre on trouve :

T = [ G0 - p- 0l V(@) 1600 ulp)) i '
= V(Q) [ﬂ(p,)(%)) u(p)]q:p’—p

= [V(z) exp(iqz) d*x
La probablhte de transition est proportionnelle au carré de I’'amplitude :

Prob ( Z | Ty |2

Si le potentiel est indépendant du temps, on a la conservation de I'énergie et le flux F = 2p est
donné par unité de temps alors, intégrant sur I’énergie et en sommant sur les spins (équation 18] et
conséquences ) on trouve

7 = [ S | B V@) P Y~ ivn i [ V(@) 2 d
avec V(q) = 27 d(q) V(q)) exemple V(7)) = % = Za F avec | ’= 4p*sin®(0/2)

Remarque : Si V(7 ) a la dimension d’une énergie, V(¢ ) a la dimension E~2 et la section
efficace a la dimension d’une surface soit £~2 (CQFD).
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e &'
Q
X
A(q)
J(q) '
p P

Figure 5: Diagramme pour la diffusion électron proton : e~ +p — e~ +p/

9.3 Diffusion électromagnétique d’un électron sur un proton (neutron)

e +tp—e 4y
(k) + (p) = (K) + (¢)

9.3.1 Le courant électromagnétique du proton (neutron)

Le proton est un fermion de spin 1/2 et de charge @ , il peut étre décrit par un spineur de Dirac ;
son quadri-vecteur courant est de la forme :

J(@) = QX W)y Fid) + o2 4, Fyl?))u(p) (22)

Les autres termes possibles sont nuls a cause des symétries de 1’électromagnétisme... Le courant ne
dépend que de deux fonctions appelées facteurs de forme.

9.3.2 L’amplitude de transition au premier ordre (figure 5)
A = 8 = ulk)(—iey")u(k) Z_% (=i J"(0))2m) 0 (K" =k + ' =) lomtr—k=p-p'
L’amplitude réduite vaut :
My = alk)(er"uk) 225 ("(a))
Dans le laboratoire, la section efficace est donnée par la formule de Rosenbluth [5] , références [4]
page 294 | [1] page 132 et 177 pour un électron ultra relativiste m = 0 et avec Q) = —e.
do e W'

0 |Lab = (W>2(Z) (K1(q*)cos*(0/2) — K»(q?) sin?(6/2)) (23)

avec ) )
Ky = F24 - 55F K, = J5(F + F)?

@ = -0 = . —p)? = —dw'sin*(0/2) = —2M(w —w')

K1(¢%) et K3(q?) contiennent les informations sur la structure électromagnétique du proton ou du
neutron en particulier le rayon carré moyen qui est expérimentalement de 'ordre de 0,8fm. Des
expériences de plus en plus précises analysent ces facteurs de forme depuis plus de 50 ans.
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9.3.3 La cible est ponctuelle et élémentaire (de Dirac)

C’est une particule de Dirac comme par exemple dans e~ + pu — €'~ + ¢/ ou la cible est un muon ;
on a

Ju(q) = Q@ xu'(p)(v )ulp) (24)

donc
FlE]_ FQEO

La section efficace s’écrit :

do Q@ W' 2

0 0 = Gy ()eos’(012) = gy sin(0/2) (25)

Remarque : cette derniére expression (équation 25) peut étre comparée a la section efficace de
Mott (équation [19/)

e ' = w dans I'équation 25 ci-dessus (ce qui implique ¢* = 0).

e un projectile sans masse (I’électron) dans I’équation [19 qui devient ’équation 21

9.3.4 La cible est complexe

Par exemple, le proton ou le neutron sont complexes car ils sont composés de quarks et éventuellement
participent a 'intéraction forte.

e S’ils peuvent étre considérés comme ponctuels a basse énergie , les facteurs de forme F; sont
indépendants de ¢°.

eou p | unité | p n unité
F o= F(0) [R0)] 1 L[ 0
F5(0) | ~0,001 | pp | 179 —1.91| un

e

2M,

F5(0) est le moment magnétique anomal et py est le magnéton nucléaire égal a
Le moment magnétique des nucléons est donné par :

po= (14 F5(0)) x uy

Remarque : Le modéle statique des quarks permet une interprétation simple de ces résultats
expérimentaux 2. Le facteur de Landé g s’exprime en fonction de F5(0)

-2
g = 1+ F,(0)  soit gT = F(0)

e A haute énergie, les facteurs de forme dépendent de ¢ ; pour le proton on obtient expérimen-
talement un ajustement satisfaisant avec la fonction ci-dessous qui correspond & un rayon carré
moyen de 0,8 fm = 0,8 10~ 3em

Fi(q?) oc (1 — q—)_2 m = 0.843 GeV

référence [1] page 178-179

http://www.math.unicaen.fr/Imno/semana/documents/longuemare/g-2.pdf page 6
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oy

5’x

Aq)
9 J(a)
2~ :

- '

A &

q3
\ q1'

Figure 6: Diagramme pour la diffusion électron "quark" : e” +¢q; +.. — €~ +q| + ..

9.4 Diffusion électromagnétique inélastique d’un électron sur un nucléon

] e +N+..—e+X \
(k) + (p) = (K) + (¥)

voir figure 6
Conditions d’observation

e Seul I'état électronique final est détecté, I’ impulsion et éventuellement le spin de I’électron
final sont mésurés.

e [’expérience mettra en évidence l'existence des quarks a haute énergie et dans une région
cinématique particuliére de I'espace de phase de I’ électron diffusé

e Dans ces conditions, la section eficace est dite inclusive car ’état X n’étant pas détermminé
par l'expérience, la probabilité doit étre sommeée sur tous les états X par principe de la MQ.

e Notations :

La masse du nucléon-cible est notée M

Dans le laboratoire est quadri-moments sont :
k= (k) K=K p=(M0) p=(E7F
0 est Pangle de diffusion dans le laboratoire. 6 = (k, k)
q est le quadri-moment transféré a la cible et v est ’énergie transférée .
g=k—-K)=0(p —-p etv=w—-u
La masse de I'électron est négligée et la masse du systéme nucléonique X est notée W
w=Ik W =[F]  W=(g+p)
On montre W? = M? +2(w — w')M + 2ww'(cos(0 — 1)



9 LA THEORIE QUANTIQUE DES CHAMPS (QED) 25

9.4.1 Cinématique de la diffusion inélastique

Il est facile de montrer que le domaine cinématique physiquement possible est caractérisé par les
inégalités suivantes

0<uw <w I’électron perd de ’énergie
—2< —1+cos(8) <0 la géométrie

M < W le nucléon est le systéme nucléonique le plus léger

Cette derniére contrainte impose une borne supplémentaire au domaine w’,6 défini par les deux
premiéres inégalités

w—w M
1 —cos(f) < 4
ww
e On peut utiliser différentes variables cinétiques pour caractériser la diffusion par exemple —¢?

et W2
—¢* = 2ww'(1 — cos(0)
W2 = M?+2M(w —w') + ¢*
Le domaine physique dans le plans —q?, W2 est un triangle tel que

M? < W? < M? +2wM

4 2 W27M2
L avec a@ = 2_“)

0<—¢*< 1ta M

e On peut utiliser également v et —g>.

Le domaine physique dans le plans v, —¢* est un triangle tel que

O<rv<w
—q* < 2Mv

—¢? < dw(w —v)

e On peut utiliser également les variables de Bjorken z et y.
r=—q¢*/2Mv

y=(w-w)/w
Le domaine physique dans le plans v, W? est tel que

O<y<l1
O<ax<l1

Loy < (1-y)

En pratique, a haute énergie, le domaine en (x,y) devient le carré de coté unité.

9.4.2 Section efficace inclusive de la diffusion trés inélastique

9.4.3 Hypothése des quarks-partons
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e+ mu-

A(q)

mu+

Figure 7: Diagramme d’annihilation en vol : e~ + et — = + u*

9.5 Annihilation électromagnétique en vol
e et —pum +put

voir figure (7

L’amplitude de transition (voir figure [7/)

9.5.1
Ars = ) (ien)olp) 225 5k (ier”)u() )5 (= —p+ 1+ 1)
avecq=k+k =p+petq = s=E?
L’amplitude réduite ,
Mpi = = alp)"v(p) ok (k)
i it & : ( notations : masse

Pour des particules non-polarisées, la somme et moyenne sur les spins conduit a
¢lectronique = m et masse muonique = m )
= Z | My P = = Te[((v0) + ma)y* ((7.p) — ma)y] x Te[(v-F) — m)yu((v-k) + m)y.]

spms
calcul des Tr (réf [1] page 123) :

Tr[((v.p') +a mi)y*((v-p) + b ma)y

— (¥'.p)) 9"

" = Tr[(v.p)v" (vp)yY] + 4abmi g

= 4[p™ p* +p* p¥ + (ab m3

En conséquence :
> Z | My |* = 4 — [p’“ A"+ (—mi = (0'p) g™k, k4 K, Ky + (—m? — (K k) gy

spms
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9.5.2 La section efficace a la limite ultra-relativiste réf [1] page 125

do o?

R — ([ — 2
O o= ()1 + cos?(0))
| Ao
g =
CcM 3s

Application numérique : ¢ = 0,85 10733 ecm? ~ nba /s = 10 GeV

27
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e- e-
e+
A(q) =

A(q)
e+

e

e+ e+

Figure 8: Diffusion Bhabha e™ +e™ — e~ +e™

9.6 Diffusion Bhabha

e +et me Fet
| |

(ko) + (kp) = (ko) + (kq)

voir figure |8
L’application des régles de Feynman conduit aux amplitudes réduites suivantes :

Mypi(1) = =5 [k, @)y 0(ka) X (k) u(ka)

M;i(2) = J;—f |g=ta—ke U(ke)V uka) X 0(kp)y,v(ka)
stk sk ok ok ok sk sk ok ok ok sk sk sk ok sk ok sk sk sk sk ok ok sk sk sk ok ok sk sk sk ok sk ok sk sk sk sk ok ok ok sk ok

La section efficace dans le centre de masse s’en déduit (équation 15) avec :
My = Mpi(1) + Myi(2)
Le résultat est (référence [1] page 121) :

do m2a? 1 1 1
—= lom = 1 {= 1 +— - — 5 }
s 16p* “sin*(0/2) = cos*(0/2)  sin?(0/2)cos*(0/2)

28
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el- el- e-
\?/ e2-
+
Aq) A(q)
\ el-
e2- e2- e-

Figure 9: Diffusion Méller e~ + e~ — e~ + e~

9.7 Diffusion Moller

’ e +e —e +e” ‘

(ka) + (kb) = (kc) + (kd)

voir figure 9

L’application des régles de Feynman conduit aux amplitudes réduites suivantes :

Mii(1) = 22 lompuore alke)y ulka) x (ke yauks)

Myi(@) = 22 sy Alka) ulke) x (ko))
La section efficace dans le centre de masse s’en déduit (équation 15) avec :
My = Mpi(1) + Mpi(2)
Le résultat est (référence [I] page 121) :

do m2a? 1 1 1
—q lom = o T T an2 2 }
dQ 16p* “sint(0/2)  cos*(0/2)  sin?(0/2)cos?(0/2)
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- Q 2
e f\f\f" g

o e
positmmunj
\/\

e+ -Q “"f\/\f\
g1l

Figure 10: Diagramme d’annihilation e™ + e~ — 2~

9.8 Annihilation au repos : le positronium

(emet) — 2y / 3y 0 — 2y

voir figure 10
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voir figure 11

Q 2
q g 8
pi0 |
'./W
anti-q Q@ T\
Y g

Figure 11: Diagramme d’annihilation du 7% — 2~

70 — 2y
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¢

Figure 12: L’effet Compton v+e~ — v+ e~

9.9 L’effet Compton

vHe —y+te

voir figure [12
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QW

Figure 13: La matérialisation électromagnétique 2y — e™ + e~

9.10 La matérialisation électromagnétique

voir figure 13

Tty —e +ef
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10 L’interaction faible

10.1 Rappels
Rappelons le lagangien de l'interaction faible apres brisure de la symétrie SU(2)*U(1) “.

10.2 Les choix de Weinberg-Salam (1967)

Pour respecter les propriétés connues des interactions faibles, Weinberg avait choisi dans sa publica-
tion de 1967, "a theory of leptons", deux groupes continus unitaires, SU2; @U1%.

e SU2, constante de couplage g, agissant sur un doublet de fermions gauches
1 v 1
Yr(r) = 5(1 —75) o) avecTu = 5(01»02703) et Bua = (Wui, Wy, W3)

e Ul, constante de couplage ¢, agissant sur ce doublet et sur un singulet droit électronique

Yr(z) = %(1—75) (Z) ®Yr(r) = %(1—1—75) (e) avec T, = Y et B,, = (B,)

particule | T} Y Q=T:+Y
VL 172 | —-1/2 0
er —1/2 | —1/2 -1
€R 0 —1 -1

Table 3: Le modéle Left & Right de Weinberg

Ce choix était justifié par la violation de parité par des interactions faibles et sa conservation par
I'interaction électromagnétique.

L’interaction entre fermions et bosons est alors entiérement définie et sa confrontation avec I’expérience
va demander environ 20 ans (il aura fallu au préalable étendre ce modéle aux hadrons ou plutdt aux
quarks).

Ling = U (—gTa Wa — ¢Y B)Yr + Ur(—gY B)ig

10.2.1 La question des courants neutres

Ce modéle prévoyait des interactions neutres des neutrinos mais celles-ci n’avaient pas encore été
observées ; d’autre part les interactions électromagnétiques risquaient de violer la parité. Il était
donc nécessaire, pour l'expérience, de redéfinir ces bosons en bosons "physiques" en attribuant des
masses aux bosons et en brisant la symétrie initiale , la nature choisissant, pour ainsi dire, une
solution ! :

réécrivons la partie diagonale de L;,;

Ling = ... — 9{T3}L Wy — gl{Y} B

3C. Longuemare , séminaires d’analyse du lmno : [Interactions électro-faibles (janvier 2006) ou |Sur la particule de
Higgs (décembre 2008).
“ou peut-étre U2, @U1R ? car les sous-espaces L et R seraient alors sur un pied d’égalité.


http://www.math.unicaen.fr/lmno/semana/documents/longuemare/InteractionsW.pdf�
http://www.math.unicaen.fr/lmno/semana/documents/longuemare/Higgs.pdf�
http://www.math.unicaen.fr/lmno/semana/documents/longuemare/Higgs.pdf�
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en explicitant les courants fermioniques droits et gauche :

{T5 3 = ¢ (Tyy ) e

) ) (26)
{Fv} = d(Yv)dr + ¢r(Yv)Ur
A la suite de Weinberg on effectue une rotation dans l'espace (W3, B)
() - el O
B 2+g2\~9 ¢ A
10.2.2 La partie électromagnétique
L’interaction électromagnétique devient (interaction avec A)
Lewm = ---_g—g/A({jSL + Jv}) Jem = {JsL +Iv} —e = g—g’>0
/92+g/2 /92+912
Lem = .— el ATem
en explicitant pour les leptons :
_ 1 _ —1 _ —1 _ —1 _
Tew = A)1(3) + E (G + ()(50) + (F (5 + (€ a(-1))
Soit
Tem = — (€e)
en clair
Lom(r) = —eAye(x)e(r) = —le| Ay TE, (27)

L’interaction électromagnétique conserve la parité et le neutrino n’interagit pas avec le champ élec-
tromagnétique A . On obtient 'expression de la charge électronique dans ce modéle :

/
S — (28)

10.2.3 La partie faible neutre

Le modéle prévoyait 1'existence d’une interaction neutre (couplage au Zj) des neutrinos qui a été
découverte en 1973 par une expérience CERN conduite par le professeur A. Lagarrigue du LAL
(Orsay). On peut écrire linteraction du Z; explicitement comme cela a été fait pour 'interaction
électromagnétique. En introduisant 1’angle de Weinberg 6y, tel que :

/

g  _ |el g _ el

cos(6 = = ;o sin(6 = = 29
o) = ot = L o = L < S 2
en explicitant :
Lz = .=+ 9% Zy ({cos’(Ow)Tsr — sin*(0w) Ty })

Remarque : Le lien entre I’électromagnétisme et les interactions faibles neutres s’exprime con-
ventionnellement par la relation ci-dessous :

si A} = {Jem — For } = {Jz} = {Tar — sin®(Ow)Tem}
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Late) =~V 2y (e 00+ ela (<152 = 20 ) ew) ) 00
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10.2.4 La partie faible chargée

Cette partie du Lagrangien d’interaction est due aux bosons "primaires" W; et Wy qui sont respon-
sables des désintégrations béta (figure ?7) soit :

Lit = ..—9 {Ji Wi + Fortr Wa)
que 'on peut écrire
Ling = ... — % (T Wy + T W)

T, = Ty +iT, T. = T\ —iT

avec
Wy = 5(Wi—iWy)  W. = (W +iWWs)
en explicitant pour les leptons :
Ly = . % (W, (ve)p + W_ (ev)1)
en clair
1— 1—
Lw(z) = ... — % <W+H v(x)y™ 2%6(56) + W_,, e(x)y" 2% z/(x)) (31)

De ce résultat, il est possible de calculer une premiére estimation de la masse des W a partir de la
durée de vie du neutron ® : on trouve My, ~ 50 GeV si g est choisi de 'ordre de |e.
Plus précisément , on vérifie avec cos(fc) = .974 et les valeurs de la table 77 :

1 Gt g >(3052(9@) m®
Tx10,20 27 (4nm)3 M,

= 1.109 107 *sec™! = 7,299 1072 MeV

7 =884 £ 10 sec expérimentalement 887 = 2 sec

10.3 Reégles de Feynman pour l'interaction électro-faible

interaction électromagnétique (QED) | —iQ~y*
interaction faible CC —1Qy*

interaction faible CN —1QyH

Table 4: Régles issues de L;,; pour les vertex des interactions électrofaibles

5C. Longuemare : [Interactions électro-faibles, janvier 2006


http://www.math.unicaen.fr/lmno/semana/documents/longuemare/InteractionsW.pdf�
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nu mu-

& nu

Figure 14: Diffusion beta inverse v, + e~ — v, + p~

10.4 Diffusion beta inverse

Vpt+e =+,

voir figure 14
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nu mu-

Figure 15: Diffusion xx des neutrinos v +n — u~ + p

10.5 Diffusion des neutrinos (anti neutrinos) sur les nucléons

Vu/Vp+nfp— p= /" +p/n

voir figure 15
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nu mu-
Q_;;/'
> X
W
> (q)
L J(a)
q2 —'& .
e .

q3 "
\ qt'

Figure 16: Diffusion trés inélastique d'un neutrino v, + ¢ +.. — =~ + ¢} + ..

10.6 Diffusion inélastique d’un neutrino (anti neutrino ) sur un "quark"

vV +n/p—p /pt+X, VX

voir figure 16
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Figure 17: Désintégration du neutron n — p + e~ + v

10.7 Désintégration du neutron

n—p+e +v

voir figure 17
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nu
mu-

W(a) anti-n

Figure 18: Désintégration beta du muon p~ — /v, +e” + 7

10.8 Désintégration beta du muon

pE = v v tetfe +ufv

voir figure (18
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10.9 Désintégration du pion chargé

nu
u Q
pi+ : AN Q
mu+

Figure 19: Désintégration du pion 7~ — +pu~ + v

™ =t /n v/,

voir figure 19

11 Conclusion

Dans cette note , nous avons voulu montrer et expliquer avec quelques détails comment la théorie
quantique amenait a des prédictions précise a l'ordre la plus bas dans quelques processus élémen-
taires bien connus. Evidemment, Il exite beaucoup d’autres transitions moins élémentaires qui , par
exemple, mettent en oeuvre l'interaction forte ; les calculs sont alors moins directs et requiérent des
hypothéses supplémentaires. Nous n’avons pas souhaité aborder ces questions en nous limitant aux
transitions les plus proches des lois fondamentales de la théorie unifiée des interactions faibles et
électromagnétiques.
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12 Annexe 1

La normalisation des états des particules physiques ?

Eléments
e Lasommation sur tous les états d’impulsion d’une particule impose d’intégrer dans tout ’espace

p
/d4p avec p = (po, 1, P2, P3)

e Pour une particule physique initiale ou finale, on se restreint aux états physiques sur leur
"couche de masse" et aux énergies positives

§(p* —m?)0(po)d'p

ce qui donne, en intégrant sur pg
d*p 2
— wy = \/P~+m?
2wy, P b

e La normalisation est lice aux propriétés de commutation (anticommutation) des opérateurs de
création et d’annihilation des états physiques des particules et aux conventions choisies, ici:

<plp>=<0]| lay,q] |0>=(2n)° 2w, & (p— )

En utilisant la fermeture des états | x >

/ <z|p><z|p>dr = /2wp exp(—i(p — p')z) d*x

on justifie pour p = p’

<z |p>= 2w, avec /d% =V
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Figure 20:  Principe de la diffusion Rutherford (1909)
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