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Figure 1: Interaction électromagnétique : La di�usion Bhabha e+ + e− → e+ + e−

Abstract
Ces notes ont été rédigées dans le cadre du séminaire d'analyse du LMNO le 11 mai 2010 à

la demande d'Eric Lehman ; elles se proposent d'utiliser des diagrammes de Feynman en théorie
quantique des champs relativistes pour calculer quelques quelques processus simples du premier
ordre. On essaiera dans un premier temps de présenter les principes puis d'expliciter en détail les
calculs pour quelques applications choisies parmi les interactions électromagnétique et faibles.
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1 Introduction
Nous nous intéressons à des systèmes quantiques qui au cours de l'expérience vont subir une transition
d'un état initial vers un état �nal sous l'action d'un mécanisme d'interaction (transformation d'un
état stationnaire vers un autre état stationnaire) ; cette interaction est :

• soit provoquée par une collision avec une cible

• soit spontanée et agit dès l'apparition du système initial
.

1. dans le premier cas , une section e�cace sera mesurée (en cm2) ; qualitativement il s'agit d'une
mesure de la surface d'ombre faite par la cible au faisceau incident. Plus précisément, si le �ux
total des particules incidentes est noté F dans le référentiel de la cible (en unité cm−2), la section
e�cace est telle que celles des particules qui traverseront cette surface subiront l'interaction :

Nint = σF ou Ṅint = σḞ (1)
Si l'on sélectionne les états �nals , on introduira la section di�érentielle

dσ = F−1dNint

Le nombre de particules qui traversent une surface ~ds par unité de temps est le �ux de du
vecteur densité de courant de particules ~j1 à travers cette surface.

dφ = ~j1.~ds avec ~j1 = ρ1~v donc σ = 1
j1

dNint

dt

2. Dans la dé�nition précédente nous avons implicitement considéré un faisceau incident sur une
cible unique. On peut également considérer, une particule incidente unique se déplaçant dans
un milieu homogène de densité de cibles ρ2. La probabilité d'une interaction par unité de
longueur de trajectoire est liée à l'incidence de celle-ci sur les sections associées aux cibles
rencontrées soit :

dP

dx
= ρ2 σ

Un raisonnement classique de probabilité permet d'en déduire la loi exponentielle pour la
probabilité P (x) d'observer la première interaction au delà de la distance x

P (x) = exp(−ρ2 σ x)

Le complément est la probabilité de n'avoir aucune interaction sur la distance x de trajectoire.
En�n, la distribution de probabilité de la première interaction est évidemment

dP

dx
= ρ2σ exp(−ρ2σx)

3. Dans le second cas, on mesurera la durée de vie du système τ = λ−1 et on en déduira la loi
exponentielle de survie au delà d'un temps t

P (t) = exp(− λ t)

ainsi que la probabilité de transition par unité de temps
dP = λdt ou Ṅdecay = λ N0 (2)

en�n, la distribution de probabilité de la première interaction qui est :
dP

dt
= λ exp(−λt)
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2 Principes de mécanique quantique
• Les postulats de la mécanique quantique
1. Un état de la physique microscopique (quantique), un atome en quelque sorte, est représenté

par un vecteur d'un espace de Hilbert approprié, H ; l'état peut être dé�ni par ses composantes
dans une base et le produit scalaire est un nombre C que l'on note

(φ, ψ) ou < φ | ψ > ∈ C

Le produit ci-dessus est l'amplitude de φ dans ψ. A cause de l'interprétation probabiliste des
amplitudes, il sera nécessaire de normaliser les états.

(ψ, ψ) = < ψ | ψ > = 1

2. Chaque observable physique Q est associée à un opérateur hermitien dans H dont les valeurs
propres q sont les résultats possibles des mesures dans le cas d'une expérience idéale menée
avec des instruments parfaits.

les mesures de Q sont = {q1, q2, ... qi, ..}

3. La probabilité de la mesure q de Q est par principe le module carré de l'amplitude de φq dans
ψ

Prob de q = |< φq | ψ >|2

Dans le cas où la valeur propre engendre un sous-espace , il sera nécessaire de sommer sur
la base du sous espace. Si l'on peut construire l'opérateur de projection | ψ >< ψ | dans le
sous espace q alors la probabilité peut se calculer comme la trace dans le sous-espace de cet
opérateur :

Prob de q =
∑

φ

< φq | ψ >< ψ | φq > = Tr{| ψ >< ψ |}

La somme des sous-espaces de Q constitue une base de H.
La moyenne des mesures de Q est :

< Q > =
∑

φ, q

q |< φq | ψ >|2 = < ψ | Qψ >

Remarque La probabilité de la mesure q de Q est aussi la moyenne de l'opérateur de projection
P(q) sur le sous-espace q.

Prob de q = < ψ | P(q) ψ >

Exemple L'opérateur Q est l'observable de position de l'"atome" dans l'espace physique R3 à
l'instant t.

Q ≡ ~x

Soit | ~x0 > un état propre : dans cet état, la mesure de la position de l'"atome" donne
systématiquement ~x0.
La probabilité de cette valeur dans ψ est par principe |< ~x0 | ψ >|2. L'amplitude < ~x0 | ψ >
est la fonction d'onde associée à l'état | ψ > :

ψ(~x) = < ~x | ψ > ∈ C
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4. l'état du vide ψ0 est associé à l'élément neutre de H en e�et l'amplitude ψ0(~x) est la fonction

0 car la probabilité de l'observation de l'atome est nulle ∀ ~x. Cependant le vide est un élément
non-nul de l'espace car sa norme est 1.
Remarque L'opérateur a+

x qui au vide fait correspondre l'état | ~x > est un opérateur de
création d'un "atome" en ~x.
Cet opérateur peut agir sur un état quelconque de H, son action crée une particule en x.
L'opérateur hermitique conjugué ax est l' opérateur d'annihilation :

a+
x | 0 > = | x > ⇒ ax | x > = | 0 >

en e�et,
< 0 | ax = < x |
< 0 | ax | x > = < x | x > = 1 ⇒ ax | x > = | 0 >

Remarque Les opérateurs a+
x et ax ne sont pas hermitiens par contre ax a+

x est hermitien et
peut avoir une interprétation physique.

5. Il en résulte une autre interprétation de la fonction d'onde d'une particule :

ψ(x) = < x | ψ > = < 0 | axψ > ∈ C

6. Les particules identiques conduisent à des fonctions d'ondes qui ont des propriétés particulières
vis à vis des permutations , par exemple à deux particules

ψ(x, y) = < 0 | axay ψ > ∈ C

- dans le cas des fermions les fonctions d'ondes sont impaires par transposition et il en
résulte que les opérateurs de création ou d'annihilation anticommutent entre eux

{ax, ay} = 0 {a+
x , a+

y } = 0

avec
{ax, a

+
x } = 1 plus généralement {ax, a

+
y } = δx,y

- inversement pour les bosons

[ax, ay] = 0 [a+
x , a+

y ] = 0

avec
[ax, a

+
x ] = 1 plus généralement [ax, a

+
y ] = δx,y

7. Comptage des particules dans un état quelconque
Lemme : Il découle des relations de commutation (anti-commutation) des bosons (fermions )
les relations suivantes

ax(a
+
x )n = [ax, (a

+
x ](a+

x )n−1 ± a+
x ax(a

+
x )n−1

supposons [ax, a
+
x ] = (axa

+
x ∓ a+

x ax) = b ( ci-dessus b = 1)

ax(a
+
x )n = (b + (±)b + b + (±)b ...)(a+

x )n−1 + (±)n(a+
x )nax

a+
x ax | n > = (b + (±)b + b + (±)b ...) | n >

Conclusion a+
x ax est un opérateur qui compte les particules en x. Pour les bosons, les valeurs

propres sont n ∈ N pour les fermions les valeurs sont 0, 1.
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3 L'équation de Schrödinger
• L'équation d'évolution et l'équation de Dyson
1. L'évolution d'une fonction d'onde obéit à l'équation de Schrödinger qui fait intervenir l'opérateur

de Hamilton H et qui apparaît comme le générateur des déplacements dans le temps :

i~
∂

∂t
ψ = H× ψ (3)

Dans la représentation x, l'équation de Schrödinger prend la forme d'une équation di�érentielle
sur les fonctions d'onde de l'espace temps.

i~
∂

∂t
ψ(~x, t) = H ψ(~x, t) avec ψ(~x, t) = < ~x | ψ(t) >

L'opérateur d'évolution qui transforme l'état initial du système à t0 vers l'état à t est unitaire
et s'écrit :

U(t, t0) = exp(− i

~

∫ t

t0

H dt)

2. Le lien avec la physique classique : le théorème d'Ehrenfest prévoit que les valeurs moyennes
des observables véri�ent une équation qui est analogue aux équations de Hamilton en mécanique
classique :

d < Q >

dt
= <

i

~
[H, Q] > + <

∂Q

∂t
>

en mécanique classique cette équation devient

dQ

dt
= [H, Q]Poisson +

∂Q

∂t

avec
[H, Q]Poisson =

∂H
∂p

∂Q

∂q
− ∂H

∂q

∂Q

∂q

Application :
Q ≡ ~p =

~
i

~∇ et H = H0 + Vint

Mécanique classique ṗj = −∂Vint

∂qj

Mécanique quantique d
dt

< pj > = − < i
~ [pj, Vint] > = − < ∇jVint >

3. Les constantes du mouvement : Si l'état initial est propre de l'opérateur Q, si Q est indépen-
dant du temps et commute avec H, la valeur propre est une constante du mouvement. Les
exemples sont nombreux : H lui même, la quantité de mouvement totale, les charges conservées,
le moment cinétique...

4. Les états stationnaires : Ils sont propres de l'hamiltonien H :

H | ψ > = E | ψ >

Dans ces états, les valeurs moyennes ou les valeurs propres de tous les observables sont des
constantes au cours du temps, c'est la raison pour laquelle on les appelle états stationnaires.

∀ Q < Q > = Cte ∀t
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Exemple :

< ~x > = ~a < ~p > = ~b < H > = E

Les états stationnaires possibles physiquement peuvent être classés par rapport aux valeurs
propres des opérateurs qui commutent avec H et qui commutent entre eux. Ces valeurs propres
s'appellent nombres quantiques ; la connaissance de ces valeurs permettra de faire l'inventaire
du possible.
Un ensemble complet d'observables de cette nature conduit par principe à générer une base de
l'espace de Hilbert du système.

5. L'équation de Dyson Pour étudier une transition entre un état (initial) sans interaction et
un autre état sans interaction (�nal), on peut formellement isoler l'opérateur d'interaction dans
l'hamiltonien

H = H0 +H1

En e�ectuant un changement d'état ψ(t) ,

ψ(t) → ψ̃(t) = exp(
i

~
H0 t) ψ(t)

on peut réécrire l'équation d'évolution de Dyson soit

i~
∂

∂t
ψ̃(t) = H1(t)× ψ̃(t)

avec H1(t) = exp( i
~ H0 t)H1 exp(− i

~ H0 t)

Remarque : s'il n'y a pas d'interaction alors ψ̃(t) est constant, égal à ψ(0).
La solution de l' équation de Dyson peut s'écrire sous forme exponentielle en introduisant
l'opérateur d'ordonnancement dans le temps T qui est nécessaire ici à cause de l'éventuelle non
commutativité des opérateurs d'interaction à t.

U(t, t0) = T exp(− i

~

∫ t

t0

H1(t) dt)

6. Généralisation relativiste : Introduction de la densité d'hamiltonien et matrice S
Dans le cas d'une transition , l'état initial comme l'état �nal sont "sans interaction" : les
particules sont libres car éloignées les unes des autres à des distances macroscopiques ; il s'agit
de déterminer une probabilité pour une transition qui résulte d'une interaction "microscopique"
et quantique. Pour remplir ce programme, on introduit une densité d'interaction dans l'espace
temps Hint(x) dont il peut résulter la transition observée. L'opérateur d'évolution pourra se
mettre sous la forme

S = T exp(− i

~

∫
Hint(x) d4x ) ou mieux = T exp(+

i

~

∫
Lint(x) d4x ) (4)

par exemple référence [2] page 351-353
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Dans ce formalisme de la théorie des champs,

• L'opérateur T garantit la causalité relativiste des processus pouvant intervenir aux dif-
férents points de l'espace temps. Les relations entre les di�érents points sont limitées par
la causalité relativiste.

• Les interactions sont ponctuelles , le formalisme est local dans R4.
• Les points dé�nissent un chemin qui permet de passer de l'état initial à l'état �nal grâce

aux interactions .
• Entre les interactions l'évolution est libre
• L'espace de Fock des états macroscopiques entrants et sortants

Pour des raisons pratiques, ces états sont composés de particules dont les quadri-impulsions
sont déterminées par "la préparation" de l'état initial où par la détection dans l'état �nal.
Ces états sont indéterminés dans l'espace temps.
Les processus physiques de mesure et de détection se situent à l'échelle macroscopique
où les di�érents constituants (particules) évoluent quasi-librement, sans interaction. Ces
états appartiennent à l'espace de Fock de la théorie, ils sont construits comme des états
de particules libres dont les caractéristiques quantiques sont déterminées. Mathématique-
ment, l'espace de Fock est l'espace de Hilbert obtenu par la somme directe des produits
d'espaces de Hilbert à une particule.

4 Les champs quantiques libres
Soit à étudier une onde bosonique dont la quantité de mouvement est �xée, ce peut être une

fonction d'onde propre de l'opérateur quantité de mouvement :

φ(x) = < x | φ > ∈ C propre de p =
~
i

∂

∂x

Soit le vecteur d'onde k , sa dimension est l'inverse d'une longueur

k =
p

~
Par TF et son inverse , on obtient :

φ(k) =

∫
φ(x) exp(ikx) d4x φ(x) = (2π)−4

∫
φ(k) exp(−ikx) d4k

L'équation de Klein-Gordon impose des limitations

(k2 −m2) φ(k) = 0 soit φ(k) = 0 sauf si k0 = ±ωk avec ωk =

√
~k2 + m2

Donc on pourra décomposer φ de la manière suivante :

φ(k) = 2π δ(k2 −m2)[θ(k0)φ+(k) + θ(−k0)φ−(k)]

alors
φ(x) =

∫
d3k

(2π)3

1

2ωk

[φ+(k) exp(−ikx) + φ−(−k) exp(ikx)]

avec
kx = ωkk

0 − ~k~x et ωk =

√
~k2 + m2
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Jusqu'ici l'onde est une fonction d'onde dé�nie sur R voire sur C. La seconde quanti�cation trans-
forme cette fonction en opérateur par l'introduction d'opérateurs de création et annihilation d'états
caractérisés par k. alors

φ(x) =

∫
d3k

(2π)3

1

2ωk

[a(k) exp(−ikx) + a+(k) exp(ikx)]

avec le commutateur (ou l'anticommutateur)

[a(k), a+(k′)] ou {a(k), a+(k′)} = (2π)32ωk δ3(k − k′)

référence [2] pages : 363 365 366 puis 370
5 L'amplitude d'une transition

Comme nous l'avons indiqué dans l'introduction , on va s'intéresser à des transitions entre un
état initial constitué de particules libres , identi�ées macroscopiquement et donc éloignées les unes
des autres et un état �nal de même nature par exemple dans les réactions suivantes qui ont été
e�ectivement abondamment étudiées dans les années 1960 :

p + n → p + n p + n → p + n + π0 int. forte

e− + p → e− + n + π+ γ + p → n + π+ int. électromagnétique

νµ + e− → νµ + e− νµ + e− → µ− + νe int. faible
Ces exemples sont choisis pour mettre en évidence les trois interactions qui se manifestent à l'échelle
microscopique, l'interaction forte , électromagnétique et faible.

Nous considérerons dans le même cadre les désintégrations des particules ; dans ce cas , l'état
entrant est composé d'une seule particule dont la durée de vie est assez longue pour qu'elle puisse
être identi�ée. Les interactions propres ou internes de cette particules (self interaction) vont conduire
à sa désintégration en un autre système de particules éventuellement stables et détectées à l'échelle
macroscopique. Nous considérons que l'état initial et l'état �nal seront libres des interactions internes
qui conduisent à la transition. Citons quelques exemples

∆+ → n + π0 ρ0 → π+ + π− int. forte

Σ0 → Λ + γ π0 → 2γ / γ + e+ + e− int. électromagnétique

π+ → µ+ + νµ n → p + e− + ν̄e int. faible

• L'amplitude de probabilité
Par principe, ce qui est accessible à l'expérimentation est la probabilité de la transition entre un
état initial (de Fock) vers un autre état de cet espace. Par principe de la mécanique quantique,
cette probabilité peut s'obtenir en calculant le module au carré de l'amplitude de la transtion
qui est un produit scalaire dans l'espace de Fock. La dynamique est contenue dans l'opérateur
de "scattering" S , les amplitudes de transition sont données par les éléments de S .

A = < f | S | i > = Sf,i = δf,i − i Tf,i

avec
S = 1 +

1

1!

∫
[i Lint(x)] d4x +

1

2!
T

∫
[i Lint(x)] [i Lint(y)] d4y d4x... (5)
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• la quadri-impulsion et sa conservation

Evidemment, tous les états �nals ne sont pas accessibles, ils sont limités par les lois de con-
servation liées aux invariances ; par exemple l'invariance par rapport aux translations d'espace
temps qui conduit à la conservation de l'énergie impulsion de l'état initial à l'état �nal.

Σ pµ
i = Σ pµ

f µ = 0,1,2,3

Dans l'état initial comme dans l'état �nal, l'énergie impulsion totale est la somme des contri-
butions individuelles des particules libres. On écrira :

Tf,i = (2π)4δ4(Σ pi − Σ pf ) Mf,i (6)

Mf,i est appelée amplitude de transition réduite : les processus quantiques doivent pouvoir se
calculer à partir de cette fonction :

états i, f →Mf,i

Par application des principes de la mécanique quantique , la probabilité de la transition i → f
sera liée au module au carré de l' amplitude de transition :

Prob (i, f) ∝| Tf,i |2 = VT (2π)4δ4(Σ pi − Σ pf ) | Mf,i |2 (7)

• l'incertitude sur l'état �nal
La physique microscopique n'est pas déterministe , l'état �nal est variable et la détermination
de probabilités est l'objectif de toute entreprise expérimentale où théorique dans le cadre d'une
dynamique quantique.
Il apparaît que certaines transitions sont interdites et historiquement les progrès réalisés à
travers ces interdictions ont été plus importants que ceux qui sont venus des transitions per-
mises.
Exemple : quelques réactions interdites

p̄ + p → K+ + π− int. forte
e+ + e− → γ int. électromagnétique
n → p + e− int. faible

6 Les symétries
Considérons formellement une opération de symétrie spaciale ou interne qui laisse l'interaction
L(x)d4x invariante ; soit U cette opération que l'on prendra unitaire. Cette invariance se traduit par

U+Lint(x) d4xU = L′int(x
′)d4x′ = Lint(x)d4x

De proche ne proche l'opérateur S est invariant dans l'opération U . Cette symétrie s'applique
également dans l'espace de Fock des états libres entrants et sortants ; il en résulte que les amplitudes
sont invariantes.

A = < f | S | i > = < Uf | S | Ui >

Exemple : U est l'opérateur de translation d'espace temps

∀a U(a) = exp(ipa)
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où p est l'opérateur de quadri-impulsion totale du système.
Reprenant l'expression de S sous forme perturbative (équation 5), il est possible d'écrire l'amplitude
en �xant une origine aux interactions et e�ectuant une translation x arbiraire :

S = U+(x)

(
1 +

1

1!
[i Lint(0)] +

1

2!
T

∫
[i Lint(0)] [i Lint(y)] d4y ...

)
U(x)d4x

Dans les états initials et �nals (espace de Fock macroscopique) les quantités de mouvement sont
déterminées, il s'en suit que l'amplitude fait apparaître explicitement la conservation de la quadri-
impulsion comme dans l'équation 6 :

Sf,i =
∫

exp(i(pf − pi)x) d4x

× < f | (1 + 1
1!

[i Lint(0)] + 1
2!
T ∫

[i Lint(0)] [i Lint(y)] d4y ...
) | i >

Le même raisonnement s'applique aux autres symétries qui s'observent à l'échelle macroscopique
comme le résultat de propriétés microscopiques, exemples : transformations de Lorentz, parité,
conjugaison de charge, U(1), SU(2) etc...

7 Des probabilités aux sections e�caces et durées de vie
Considérons à nouveau la formule qui dé�nit la section e�cace, équation 1, ou la durée de vie,

équation 2. Il est évident que le nombre de transitions observées pendant l'expérience dépend du
nombre de particules entrées en collision , il y a donc une question de normalisation pour passer aux
probabilités.
Par ailleurs, l'amplitude se transition dépend de la normalisation des états initials et �nals , de plus
la sommation sur les états �nals suppose la normalisation de chaque état.
7.1 Conventions
Liste de nos conventions

• Les indice d'espace-temps sont µ = 0, 1, 2, 3 ; la métrique g est telle que gµν = 1,−1,−1,−1.

• Les unités sont telles que ~ = 1 et c = 1. De plus, en l'électromagnétisme, on choisira :

ε0 = 1 = µ0 α =
e2

4πε0~c
=

e2

4π
∼ 1

137, 0..

• La charge électronique sera négative et notée e = − | e |
• L'impulsion d'une particule libre est notée ~p éventuellement pµ ;

• L'énergie positive d'une particule est ωp = +
√

~p2 + m2 ; l'énergie de l'état relativiste d'une
particule est E = p0 = ±ωp

• La normalisation des états d'impulsion ~p est choisie pour satisfaire à la relativité :

d Prob

d3x
= φ+

p (x)φp(x) = 2ωp

Par exemple, voir la référence [1] page 88 ou l'annexe 1. Le courant de particules libres est un
quadrivecteur conservé.
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• Les transformations de Fourier de l'espace physique x vers l'espace réciproque q

f(x) = (2π)−1

∫
exp(−iqx)f(q) dq f(q) =

∫
exp(iqx)f(x) dx (8)

7.2 Sections e�caces
Soit la réaction

a + b → f

Dans le laboratoire, b est la cible et a est le projectile. Avec nos conventions,

• le �ux total des particules incidentes est

Fa = T (2ωava)

• le nombre des cibles est
Nb = V (2ωb)

• le nombre de transitions observées est Ni

Ni = σfi FaNb = | Tf,i |2

En application de l'équation 7 et dans le cadre nos conventions, la section e�cace et l'amplitude
quantique sont liées par l'équation suivante :

σtotale = F−1
∑

f

(2π)4δ4(Σ pi − Σ pf )× | Mf,i |2 avec F = (2ωb)(2ωava) (9)

On montre

F = 4((pa.pb)
2 − (mamb)

2)1/2 =
√

(s− (ma + mb)2)(s− (ma −mb)2) (10)

7.3 Durées de vie
Soit la désintégration

a → f

De la même façon, la probabilité de transition par unité de temps est :

λtotale = F−1
∑

f

(2π)4δ4(Σ pi − Σ pf )× | Mf,i |2 (11)

avec F = (2ωa) dans le référentiel de la particule F = (2ma)

7.4 La somme sur les états �nals
La mécanique quantique précise la densité d'états d'impulsion dans l'espace réciproque d' un espace
physique de volume V ∑

f

(états d'impulsion) = Πf

∫
d3p′

(2π)32ω′p
(12)
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Exemple Si la réaction ne comporte que deux particules �nales i → c + d dans le référentiel du

centre de masse on véri�e :
∫

(2π)4δ3(pc + pd)δ(ωc + ωd − E0)
d3pc

(2π)32ωc

d3pd

(2π)32ωd

= (2π)−2 p′

4E0

∫
dΩ (13)

où p′(p) est la quantité de mouvement commune des deux particules �nales (initiales) et E0 est
l'énergie dans le CM notée parfois √s ≡ E0.

σa+b→c+d |CM = F−1 p′

4E0

(2π)−2

∫
| Mf,i |2 dΩ (14)

avec F = 4p E0 réf équation10,

σa+b→c+d |CM =
p′

p
(

1

8πE0

)2

∫
| Mf,i |2 dΩ

pour la section élastique on aura :

σa+b→a+b |CM =

∫
f(ω)2 dΩ f(ω) = | 1

8πE0

Mf,i | (15)
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8 L'interaction électromagnétique
8.1 Di�usion Rutherford
référence 1

e− + Z → e− + Z

La section e�cace di�érentielle classique (voir référence ci-dessus) :

dσ

dΩ
=

(
α~c
4E0

)2
1

sin4(θ/2)
avec E0 =

1

2
mv2

0

Figure 2: Di�usion Rutherford sur une cible ponctuelle

8.1.1 Démonstration en physique classique
Rappelons la formule de Rutherford :

cot
θ

2
=

2bE0

κ
avec κ =

Ze2

4πε0

(16)

où b est la paramètre d'impact et θ l'angle de di�usion
Remarque : θ croit quand Z croit ou quand b décroit ce qui est attendu physiquement. La

démonstration la plus "physique" de cette formule peut être faite par intégration des variations
d'impulsion : ∫ ∞

−∞
~̇p dt = [ ~p(t) ]+∞−∞ = ~pf − ~pi =

∫ ∞

−∞
~f(t)dt

En e�et :

la loi des aires : dt = mr2

L
dθ avec L = mv0b

~pf − ~pi =
∫∞
−∞ (mr2

L
)~f(t) dθ = κ

v0b

∫∞
−∞ ~u dθ avec θ(−∞) = π et θ(∞) = θ0

avec ~pf − ~pi = m v0(cos(θ0) + 1, sin(θ0)) et ~u = (cos(θ), sin(θ))

On en déduit sans di�culté la formule 16 ci-dessus
1http://en.wikipedia.org/wiki/Rutherford_Scattering
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8.1.2 Démonstration par la physique quantique
Soit à calculer la section e�cace de di�usion d'un électron sur une charge Z | e | ponctuelle située
à l'origine du référentiel du laboratoire. Le diagramme de Feynman qui décrit cette transition est
présenté sur la �gure 3.

Les étapes de la démonstration
• Le lagrangien libre de l'électron

L0(x) = ψ̄(x)((p.γ)−m)ψ(x)

• L'équation libre de Dirac
((p.γ)−m)ψ(x) = 0

• L'interaction de l'électron avec un champ extérieur Aµ (principe d'interaction minimale)

((p.γ)− e(A.γ)−m)ψ(x) = 0

Figure 3: Diagramme pour la di�usion Rutherford sur le courant J(q)

• La forme hamiltonienne de cette équation

i∂0ψ(x) = [−i∂jγ
0γj + eγ0(A.γ) + γ0m]ψ(x)

donc pour l'interaction :
Hint(x) = e Aµ(x)γ0γµ (17)

• L'amplitude de transition au premier ordre (�gure 3)
Sf,i = −i

∫
ψ′+(x)(Hint(x))ψ(x)d4x

= −i
∫

exp(i(p′ − p)x) Aµ(x)d4x× u(p′)+(e γ0γµ)u(p)

= −iAµ(q)× ū(p′)(e γµ)u(p)

avec
q = p′ − p et Aµ(q) =

∫
exp(iqx) Aµ(x)d4x
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• Le champ de photons vituels rayonnés par la source J(x) (relations de Maxwell avec ε0 = 1)

∂µFµν = Jν(x)

par transformation de Fourier , on obtient l'équation suivante sur le champ Aµ(q)

(−iq)2Aν − (−iq)ν(−iq)µAµ(q) = Jν(q)

Equation que l'on peut écrire formellement

Aµ(q) = [−q2gµν + qνq
µ]−1Jν(q)

• Dans le cas d'une charge électrique ponctuelle, la conservation du courant impose qu'elle soit
statique

Jµ(x) = (Q δ3(x),~0)

La transformée de Fourier du courant conduit à

J0(q) = 2πδ(q0)Q

Donc
A0(q) =

1

~q2
J0(q) = 2πδ(q0)

Q

~q2

avec | ~q |2 = 4p2sin2(θ/2)

Remarque Le retour à l'espace ordinaire conduit à (par transformation de Fourier inverse)

A0(x) =
1

4π

Q

| ~x |

• L'amplitude de transition Tfi

Tf,i = A0(q)× ū(p′)(e γ0)u(p)

= 2πδ(q0) Qe
~q2 ū(p′)γ0u(p)

Dans ce cas l'amplitude de transition (réduite) est :

Mf,i =
Qe

~q2
ū(p′)γ0u(p)

• Finalement, en prenant correctement en compte les normalisations , on calcule la section e�cace
quantique au premier ordre coulombien en sommant le spin �nal et en moyennant sur le spin
initial si l'électron incident est non-polarisé :

σ = F−1

∫
2πδ(q0)

1

2

∑
spin

| Mf,i |2 d3p′

(2π)32ω′
(18)

avec F = 2ωv = 2p.

• L'intégration sur d3p′ est simple à cause de la conservation de l'énergie (q0 = 0)

σ = F−1
∫

2π 1
2

∑
spin | Mf,i |2 p ω

(2π)3 2ω
dΩ′

dσ = 1
2 (4π)2

(Qe
~q2 )2

∑
spin | ū(p′)γ0u(p) |2 dΩ′
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• En�n la somme sur les spins : Nous utilisons une formule connue des ondes planes de spineurs

par exemple dans la référence [1] page 123 :
∑

spin(ū(p′)γµu(p))∗(ū(p′)γνu(p)) = Tr[u(p′)ū(p′)γµu(p)ū(p)γν ]

= Tr[((p′.γ) + m)γµ((p.γ) + m)γν ] = 4(p′µpν + p′νpµ − ((p′.p)−m2)gµν

∑
spin

| ū(p′)γ0u(p) |2 = 4[ω2 + p2cos(θ) + m2] = 4[2ω2 + p2(cos(θ)− 1)]

Remarque Tr est la trace d'une matrice.

• En�n on obtient la section di�érentielle de Mott (un fermion chargé sur une cible ponctuelle) :

dσ

dΩ
|cible =

(
Zα

2p2

)2
[ω2 + p2cos(θ) + m2]

2sin4(θ/2)
=

(
Zαω

2p2

)2
(1− v2sin2(θ/2))

sin4(θ/2)
(19)

A la limite non-relativiste on retrouve la section de Rutherford ω ∼ m et v ∼ 0

dσ

dΩ
=

(
Zα

4E0

)2
1

sin4(θ/2)
(20)

A la limite ultra-relativiste m ∼ 0 , v ∼ 1 et ω ∼ p

dσ

dΩ
=

(
Zα

2ω

)2
cos2(θ/2)

sin4(θ/2)
(21)

La section e�cace a la dimension de E−2 ce qui est correct dans le système d'unité employé
ici, ~cE−1 est une longueur qui décroît avec l'énergie .
Remarque : Retour aux unités macroscopiques pour faire une application numérique dans le
cas de l'expérience de Rutherford

α + Au → α + Au

avec Z = 2× 79 = 158 α = 1/137, 0

E0 = p2
0/2M ∼ 10 MeV Mc2 ∼ 4, 103 MeV ~ c = 197, 10−15 MeV.m

dσ = σ0 × sin−4(θ/2) dΩ σ0 = 0, 32 10−24 cm2 ∼ barn

• Il est bien connu que la section e�cace de Rutherford diverge à θ = 0 ; ceci est dû à la portée
in�nie du potentiel coulombien. En réalité, le potentiel du noyau atomique est écranté par
les électrons de l'atome à une distance d de l'ordre de l'Angström ; donc, pour des valeurs de
| ~q | = 2p0sin(θ/2) inférieures à ~d−1, la di�usion ne se produit plus.
en conséquence dσ = 0 pour les valeurs de θ telles que

2p0 sin(θ/2) <
~
d

soit θ ∼ 10−5 avec d ∼ 10−10 m

Le paramètre "naturel" d'intégration de la section e�cace est | ~q | = 2p0sin(θ/2) qui varie sur
l'intervalle [~

d
, 2p0]

• La structure nucléaire "apparaît" pour les grandes valeurs de | ~q | soit pour d ∼ 10−15 m , la
di�usion Rutherford est dite "anomale".
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9 La théorie quantique des champs (QED)
Les règles de Feynman permettent d'écrire l'amplitude de transition Tf,i pour un chemin donné

sous forme de graphe ; la contribution des vertex (points d'interaction) se déduit du lagrangien
d'interaction.

Pour QED on a :
Lint = −Q Aµ ψ̄γµψ (x)

9.1 Règles de Feynman pour QED

particule état intial propagateur état �nal

intégration d4p/(2π)4

fermion u(p) ū(p)
i((p.γ)−m)−1

antifermion v̄(p) v(p)

boson scalaire 1 i(p2 −m2)−1 1

boson vectoriel εµ i(−p2gµν + pµ pν)
−1 ε∗µ

photon (jauge de Lorentz) εµ igµν (−p2)−1 ε∗µ

Table 1: Règles de Feynman issues du lagrangien libre des particules

interaction quantique (QED) −iQγµ

conservation de p (2π)4δ4(pin − pout)

combinatoire(nième ordre) 1
n!

potentiel classique (équation 8) −iγ0 V (q)

Table 2: Règles issues de Lint pour les vertex

si S = T exp(+ i
~
∫ Lint(x) d4x )

alors : Sf,i = δf,i − i Tf,i Tf,i = (2π)4δ4(Σ pi − Σ pf ) Mf,i en�n équations 9 11
-
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Remarque : application à la di�usion Rutherford (�gure 3) référence [4] page 149.

Sf,i =

∫
ū(p′)(−ieγµ)u(p)

gµν

−q2
(−i Jν(q))(2π4)δ4(p′ − p− q)

i d4q

(2π)4

Avec J j(q) = 0 et J0(q) = 2πδ(q0)Q avec Q = −Ze

Mf,i =

(
Qe

~q2

)
ū(p′)γ0u(p) |q=p′−p

Pour calculer la section e�cace on reprend l'équation 18

Figure 4: Di�usion sur un potentiel

9.2 Di�usion d'un fermion de spin 1/2 sur une source de potentiel V (x)

a + X → a′ + X

(p) + (q) = (p′)

Soit à calculer la section e�cace de la di�usion d'une particule de spin 1/2 sur le potentiel : par
l'application des règles de Feynman au graphe du premier ordre on trouve :

Tfi =

∫
(δ4(p′ − p− q)[−i V (q) ū(p′)(γ0) u(p)] i d4q

= V (q) [ū(p′)(γ0) u(p)]q=p′−p

V (q) =
∫

V (x) exp(iqx) d4x
La probabilité de transition est proportionnelle au carré de l'amplitude :

Prob (f, i) ∼
∑

f

| Tf,i |2

Si le potentiel est indépendant du temps, on a la conservation de l'énergie et le �ux F = 2p est
donné par unité de temps alors, intégrant sur l'énergie et en sommant sur les spins (équation 18 et
conséquences ) on trouve

σ =
∫

1
2 (4π)2

∑
spin | ū(p′)γ0u(p) |2 | V (~q) |2 dΩ′ ∼ lim NR

m2

(2π)2

∫ | V (~q ) |2 dΩ′

avec V (q) = 2π δ(q0) V (~q)) exemple V (~q)) = Qe
~q2 = Zα 4π

~q2 avec | ~q |2= 4p2sin2(θ/2)

Remarque : Si V (~x ) a la dimension d'une énergie, V (~q ) a la dimension E−2 et la section
e�cace a la dimension d'une surface soit E−2 (CQFD).



9 LA THÉORIE QUANTIQUE DES CHAMPS (QED) 22

Figure 5: Diagramme pour la di�usion électron proton : e− + p → e′− + p′

9.3 Di�usion électromagnétique d'un électron sur un proton (neutron)
e− + p → e′− + p′

(k) + (p) = (k′) + (p′)

9.3.1 Le courant électromagnétique du proton (neutron)
Le proton est un fermion de spin 1/2 et de charge Q , il peut être décrit par un spineur de Dirac ;
son quadri-vecteur courant est de la forme :

Jµ(q) = Q× ū′(p)(γµ F1(q
2) +

iσµν

2M
qν F2(q

2))u(p) (22)

Les autres termes possibles sont nuls à cause des symétries de l'électromagnétisme... Le courant ne
dépend que de deux fonctions appelées facteurs de forme.

9.3.2 L'amplitude de transition au premier ordre (�gure 5)

A = Sf,i = ū(k′)(−ieγµ)u(k)
igµν

−q2
(−i Jν(q))(2π)4δ4(k′ − k + p′ − p) |q=k′−k=p−p′

L'amplitude réduite vaut :
Mf,i = ū(k′)(eγµ)u(k)

gµν

−q2
( Jν(q))

Dans le laboratoire, la section e�cace est donnée par la formule de Rosenbluth [5] , références [4]
page 294 , [1] page 132 et 177 pour un électron ultra relativiste m = 0 et avec Q = −e.

dσ

dΩ
|Lab = (

α

2ωsin2(θ/2)
)2(

ω′

ω
)
(
K1(q

2)cos2(θ/2)−K2(q
2) sin2(θ/2)

)
(23)

avec
K1 = F 2

1 + q2

4M2 F
2
2 K2 = q2

2M2 (F1 + F2)
2

q2 = (p− p′)2 = (p′e − pe)
2 = −4ωω′sin2(θ/2) = −2M(ω − ω′)

K1(q
2) et K2(q

2) contiennent les informations sur la structure électromagnétique du proton ou du
neutron en particulier le rayon carré moyen qui est expérimentalement de l'ordre de 0, 8fm. Des
expériences de plus en plus précises analysent ces facteurs de forme depuis plus de 50 ans.
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9.3.3 La cible est ponctuelle et élémentaire (de Dirac)
C'est une particule de Dirac comme par exemple dans e− + µ → e′− + µ′ où la cible est un muon ;
on a

Jµ(q) = Q× ū′(p)(γµ )u(p) (24)
donc

F1 ≡ 1 F2 ≡ 0

La section e�cace s'écrit :

dσ

dΩ
|Lab = (

α

2ωsin2(θ/2)
)2(

ω′

ω
)(cos2(θ/2)− q2

2M2
sin2(θ/2)) (25)

Remarque : cette dernière expression (équation 25) peut être comparée à la section e�cace de
Mott (équation 19 )

• ω′ = ω dans l'équation 25 ci-dessus (ce qui implique q2 = 0).

• un projectile sans masse (l'électron) dans l'équation 19 qui devient l'équation 21

9.3.4 La cible est complexe
Par exemple, le proton ou le neutron sont complexes car ils sont composés de quarks et éventuellement
participent à l'intéraction forte.

• S'ils peuvent être considérés comme ponctuels à basse énergie , les facteurs de forme Fi sont
indépendants de q2.

Fi = Fi(0)
e ou µ unité p n unité

F1(0) 1 1 0
F2(0) ∼ 0, 001 µB 1.79 −1.91 µN

F2(0) est le moment magnétique anomal et µN est le magnéton nucléaire égal à e
2Mp

.
Le moment magnétique des nucléons est donné par :

µ = (1 + F2(0))× µN

Remarque : Le modèle statique des quarks permet une interprétation simple de ces résultats
expérimentaux 2. Le facteur de Landé g s'exprime en fonction de F2(0)

g

2
= 1 + F2(0) soit g − 2

2
= F2(0)

• à haute énergie, les facteurs de forme dépendent de q2 ; pour le proton on obtient expérimen-
talement un ajustement satisfaisant avec la fonction ci-dessous qui correspond à un rayon carré
moyen de 0, 8 fm = 0, 8 10−13cm

Fi(q
2) ∝ (1− q2

m2
)−2 m = 0.843 GeV

référence [1] page 178-179
2http://www.math.unicaen.fr/lmno/semana/documents/longuemare/g-2.pdf page 6
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Figure 6: Diagramme pour la di�usion électron "quark" : e− + q1 + .. → e′− + q′1 + ..

9.4 Di�usion électromagnétique inélastique d'un électron sur un nucléon
e− + N + .. → e′− + X

(k) + (p) = (k′) + (p′)

voir �gure 6
Conditions d'observation

• Seul l'état électronique �nal est détecté, l' impulsion et éventuellement le spin de l'électron
�nal sont mésurés.

• L'expérience mettra en évidence l'existence des quarks à haute énergie et dans une région
cinématique particulière de l'espace de phase de l' électron di�usé

• Dans ces conditions, la section e�cace est dite inclusive car l'état X n'étant pas détermminé
par l'expérience, la probabilité doit être sommée sur tous les états X par principe de la MQ.

• Notations :

La masse du nucléon-cible est notée M
Dans le laboratoire est quadri-moments sont :

k = (ω,~k) k′ = (ω′, ~k′) p = (M,~0) p′ = (E ′, ~p′)

θ est l'angle de di�usion dans le laboratoire. θ = (~k,~k′)

q est le quadri-moment transféré à la cible et ν est l'énergie transférée .
q = (k − k′) = (p′ − p) et ν = ω − ω′

La masse de l'électron est négligée et la masse du système nucléonique X est notée W

ω = |~k| ω′ = |~k′| W 2 = (q + p)2

On montre W 2 = M2 + 2(ω − ω′)M + 2ωω′(cos(θ − 1)
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9.4.1 Cinématique de la di�usion inélastique
Il est facile de montrer que le domaine cinématique physiquement possible est caractérisé par les
inégalités suivantes

0 < ω′ < ω l'électron perd de l'énergie

−2 < −1 + cos(θ) < 0 la géométrie

M < W le nucléon est le système nucléonique le plus léger
Cette dernière contrainte impose une borne supplémentaire au domaine ω′, θ dé�ni par les deux
premières inégalités

1− cos(θ) <
(ω − ω′)M

ωω′

• On peut utiliser di�érentes variables cinétiques pour caractériser la di�usion par exemple −q2

et W 2.
−q2 = 2ωω′(1− cos(θ)

W 2 = M2 + 2M(ω − ω′) + q2

Le domaine physique dans le plans −q2,W 2 est un triangle tel que
M2 < W 2 < M2 + 2ωM

0 < −q2 < 4ω2−a(W 2−M2)
1+a

avec a = 2ω
M

• On peut utiliser également ν et −q2.
Le domaine physique dans le plans ν,−q2 est un triangle tel que

0 < ν < ω

−q2 < 2Mν

−q2 < 4ω(ω − ν)

• On peut utiliser également les variables de Bjorken x et y.
x = −q2/2Mν

y = (ω − ω′)/ω

Le domaine physique dans le plans ν, W 2 est tel que
0 < y < 1

0 < x < 1

M
2ω

xy < (1− y)

En pratique, à haute énergie, le domaine en (x, y) devient le carré de côté unité.

•

9.4.2 Section e�cace inclusive de la di�usion très inélastique
9.4.3 Hypothèse des quarks-partons
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Figure 7: Diagramme d'annihilation en vol : e− + e+ → µ− + µ+

9.5 Annihilation électromagnétique en vol
e− + e+ → µ− + µ+

(k) + (k′) = (p′) + (p)

voir �gure 7

9.5.1 L'amplitude de transition (voir �gure 7 )

Af,i = ū(p′)(−ieγµ)v(p)
igµν

−q2
v̄(k′)(−ieγν)u(k)(2π4)δ4(−p′ − p + k′ + k)

avec q = k + k′ = p + p′ et q2 = s = E2
0

L'amplitude réduite
Mf,i =

e2

−s
ū(p′)γµv(p) v̄(k′)γµu(k)

Pour des particules non-polarisées, la somme et moyenne sur les spins conduit à : ( notations : masse
électronique = m et masse muonique = m1 )

1

2

∑
spins

| Mf,i |2 =
e4

s2
Tr[((γ.p′) + m1)γ

µ((γ.p)−m1)γ
ν ]× Tr[((γ.k′)−m)γµ((γ.k) + m)γν ]

calcul des Tr (réf [1] page 123) :

Tr[((γ.p′) + a m1)γ
µ((γ.p) + b m1)γ

ν ] = Tr[(γ.p′)γµ(γ.p)γν ] + 4ab m2
1 gµν

= 4[p′µ pν + p′µ pν + (ab m2
1 − (p′.p)) gµν ]

En conséquence :

1

2

∑
spins

| Mf,i |2 = 4
e4

s2
[p′µ pν + p′µ pν + (−m2

1 − (p′.p)) gµν ][k′µ kν + k′µ kν + (−m2 − (k′.k)) gµν ]
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9.5.2 La section e�cace à la limite ultra-relativiste réf [1] page 125

dσ

dΩ
|CM= (

α2

4s
)(1 + cos2(θ))

σ |CM=
4πα2

3s

Application numérique : σ = 0, 85 10−33 cm2 ∼ nb à √s = 10 GeV
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Figure 8: Di�usion Bhabha e− + e+ → e− + e+

9.6 Di�usion Bhabha
e− + e+ → e− + e+

(ka) + (kb) = (kc) + (kd)

voir �gure 8
L'application des règles de Feynman conduit aux amplitudes réduites suivantes :

Mf,i(1) = −e2

q2 |q=ka+kb
ū(kc)γ

µv(kd)× v̄(kb)γµu(ka)

Mf,i(2) = +e2

q2 |q=ka−kc ū(kc)γ
µu(ka)× v̄(kb)γµv(kd)

*************************************************
La section e�cace dans le centre de masse s'en déduit (équation 15) avec :

Mf,i = Mf,i(1) +Mf,i(2)

Le résultat est (référence [1] page 121) :

dσ

dΩ
|CM =

m2α2

16p4
{ 1

sin4(θ/2)
+

1

cos4(θ/2)
− 1

sin2(θ/2)cos2(θ/2)
}
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Figure 9: Di�usion Möller e− + e− → e− + e−

9.7 Di�usion Möller
e− + e− → e− + e−

(ka) + (kb) = (kc) + (kd)

voir �gure 9
L'application des règles de Feynman conduit aux amplitudes réduites suivantes :

Mf,i(1) = −e2

q2 |q=ka−kc ū(kc)γ
µu(ka)× ū(kd)γµu(kb)

Mf,i(2) = +e2

q2 |q=ka−kd
ū(kd)γ

µu(ka)× ū(kc)γµu(kb)

La section e�cace dans le centre de masse s'en déduit (équation 15) avec :

Mf,i = Mf,i(1) +Mf,i(2)

Le résultat est (référence [1] page 121) :

dσ

dΩ
|CM =

m2α2

16p4
{ 1

sin4(θ/2)
+

1

cos4(θ/2)
− 1

sin2(θ/2)cos2(θ/2)
}
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Figure 10: Diagramme d'annihilation e+ + e− → 2γ

9.8 Annihilation au repos : le positronium
(e−e+) → 2γ / 3γ π0 → 2γ

voir �gure 10
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Figure 11: Diagramme d'annihilation du π0 → 2γ

π0 → 2γ

voir �gure 11
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Figure 12: L'e�et Compton γ + e− → γ + e−

9.9 L'e�et Compton
γ + e− → γ + e−

voir �gure 12
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Figure 13: La matérialisation électromagnétique 2γ → e+ + e−

9.10 La matérialisation électromagnétique
γ + γ → e− + e+

voir �gure 13
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10 L'interaction faible
10.1 Rappels
Rappelons le lagangien de l'interaction faible après brisure de la symétrie SU(2)*U(1) 3.

10.2 Les choix de Weinberg-Salam (1967)
Pour respecter les propriétés connues des interactions faibles, Weinberg avait choisi dans sa publica-
tion de 1967, "a theory of leptons", deux groupes continus unitaires, SU2L⊗U14.

• SU2, constante de couplage g, agissant sur un doublet de fermions gauches

ψL(x) =
1

2
(1− γ5)

(
ν
e

)
avec Ta =

1

2
(σ1, σ2, σ3) et Bµa = (Wµ1,Wµ2,Wµ3)

• U1, constante de couplage g′, agissant sur ce doublet et sur un singulet droit électronique

ψL(x) = 1
2
(1− γ5)

(
ν
e

)
⊕ ψR(x) = 1

2
(1 + γ5)

(
e
)
avec Ta = Y et Bµa = (Bµ)

particule T3 Y Q = T3 + Y
νL 1/2 −1/2 0
eL −1/2 −1/2 −1
eR 0 −1 −1

Table 3: Le modèle Left & Right de Weinberg

Ce choix était justi�é par la violation de parité par des interactions faibles et sa conservation par
l'interaction électromagnétique.
L'interaction entre fermions et bosons est alors entièrement dé�nie et sa confrontation avec l'expérience
va demander environ 20 ans (il aura fallu au préalable étendre ce modèle aux hadrons ou plutôt aux
quarks).

Lint = ψ̄L (−gTa 6 Wa − g′Y 6 B) ψL + ψ̄R (− g′Y 6 B) ψR

10.2.1 La question des courants neutres
Ce modèle prévoyait des interactions neutres des neutrinos mais celles-ci n'avaient pas encore été
observées ; d'autre part les interactions électromagnétiques risquaient de violer la parité. Il était
donc nécessaire, pour l'expérience, de redé�nir ces bosons en bosons "physiques" en attribuant des
masses aux bosons et en brisant la symétrie initiale , la nature choisissant, pour ainsi dire, une
solution ! :
réécrivons la partie diagonale de Lint

Lint = ...− g{T3}L W3 − g′{Y } B

3C. Longuemare , séminaires d'analyse du lmno : Interactions électro-faibles (janvier 2006) ou Sur la particule de
Higgs (décembre 2008).

4ou peut-être U2L⊗U1R ? car les sous-espaces L et R seraient alors sur un pied d'égalité.

http://www.math.unicaen.fr/lmno/semana/documents/longuemare/InteractionsW.pdf�
http://www.math.unicaen.fr/lmno/semana/documents/longuemare/Higgs.pdf�
http://www.math.unicaen.fr/lmno/semana/documents/longuemare/Higgs.pdf�
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en explicitant les courants fermioniques droits et gauche :

{J3 }L = ψ̄L (T3γ ) ψL

{JY } = ψ̄L ( Y γ ) ψL + ψ̄R (Y γ ) ψR

(26)

A la suite de Weinberg on e�ectue une rotation dans l'espace (W3, B)
(

W3

B

)
=

1√
g2 + g′2

(
g g′

−g′ g

)(
Z0

A

)

10.2.2 La partie électromagnétique
L'interaction électromagnétique devient (interaction avec A)

Lem = ...− gg′√
g2 + g′2

A ({J3L + JY }) Jem = {J3L + JY } − e =
gg′√

g2 + g′2
> 0

Lem = ...− | e | A Jem

en explicitant pour les leptons :

Jem = {(ν̄ν)L(
1

2
) + (ē e)L(

−1

2
) + (ν̄ν)L(

−1

2
) + (ē e)L(

−1

2
) + (ē e)R(−1)}

Soit
Jem = − (ē e)

en clair

Lem(x) = − e Aµ ē(x)γµe(x) = − | e | Aµ J µ
em (27)

L'interaction électromagnétique conserve la parité et le neutrino n'interagit pas avec le champ élec-
tromagnétique A . On obtient l'expression de la charge électronique dans ce modèle :

e = − gg′√
g2 + g′2

< 0 (28)

10.2.3 La partie faible neutre
Le modèle prévoyait l'existence d'une interaction neutre (couplage au Z0) des neutrinos qui a été
découverte en 1973 par une expérience CERN conduite par le professeur A. Lagarrigue du LAL
(Orsay). On peut écrire l'interaction du Z0 explicitement comme cela a été fait pour l'interaction
électromagnétique. En introduisant l'angle de Weinberg θW tel que :

cos(θW ) =
g√

g2 + g′2
=

| e |
g′

; sin(θW ) =
g′√

g2 + g′2
=

| e |
g

(29)

en explicitant :

LZ = ...−
√

g2 + g′2 Z0 ( {cos2(θW )J3L − sin2(θW )JY })

Remarque : Le lien entre l'électromagnétisme et les interactions faibles neutres s'exprime con-
ventionnellement par la relation ci-dessous :

si {JY } = {Jem − J3L } ⇒ {JZ} = {J3L − sin2(θW )Jem}
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LZ = ...−
√

g2 + g′2 Z0 JZ

en explicitant pour les leptons:

JZ =

(
(ν̄ν)L(

1

2
) + (ēe)L(

−1

2
)− sin2(θW )(−ēe)

)

en clair

LZ(x) = −
√

g2 + g′2 Z0µ

(
ν̄(x)γµ 1− γ5

2
ν(x) + ē(x)γµ

(
−1− γ5

2
− 2sin2(θW )

)
e(x)

)
(30)
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10.2.4 La partie faible chargée
Cette partie du Lagrangien d'interaction est due aux bosons "primaires" W1 et W2 qui sont respon-
sables des désintégrations béta (�gure ??) soit :

Lint = ...− g ({J1L W1 + J2L}L W2 )

que l'on peut écrire

Lint = ...− g√
2
(J+L W+ + J−L W− )

avec
T+ = T1 + iT2 T− = T1 − iT2

W+ = 1√
2
(W1 − iW2) W− = 1√

2
(W1 + iW2)

en explicitant pour les leptons :

LW = ...− g√
2

(W+ (ν̄e)L + W− (ēν)L)

en clair

LW (x) = ...− g√
2

(
W+µ ν̄(x)γµ 1− γ5

2
e(x) + W−µ ē(x)γµ 1− γ5

2
ν(x)

)
(31)

De ce résultat, il est possible de calculer une première estimation de la masse des W à partir de la
durée de vie du neutron 5 : on trouve MW ∼ 50 GeV si g est choisi de l'ordre de |e|.
Plus précisèment , on vérifie avec cos(θC) = .974 et les valeurs de la table ?? :

1

τ × 10, 20
=

G2
βm5

2π3
= (

g4

(4π)3
)

cos2(θC) m5

M4
W

= 1.109 10−4sec−1 = 7, 299 10−26 MeV

τ = 884 ± 10 sec expérimentalement 887± 2 sec

10.3 Règles de Feynman pour l'interaction électro-faible

interaction électromagnétique (QED) −iQγµ

interaction faible CC −iQγµ

interaction faible CN −iQγµ

Table 4: Règles issues de Lint pour les vertex des interactions électrofaibles

5C. Longuemare : Interactions électro-faibles, janvier 2006

http://www.math.unicaen.fr/lmno/semana/documents/longuemare/InteractionsW.pdf�
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Figure 14: Di�usion beta inverse νµ + e− → νe + µ−

10.4 Di�usion beta inverse
νµ + e− → µ− + νe

voir �gure 14
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Figure 15: Di�usion xx des neutrinos ν + n → µ− + p

10.5 Di�usion des neutrinos (anti neutrinos) sur les nucléons
νµ/ν̄µ + n/p → µ−/µ+ + p/n

voir �gure 15
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Figure 16: Di�usion très inélastique d'un neutrino νµ + q1 + .. → µ− + q′1 + ..

10.6 Di�usion inélastique d'un neutrino (anti neutrino ) sur un "quark"
νµ/ν̄µ + n/p → µ−/µ+ + X, ∀ X

voir �gure 16
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Figure 17: Désintégration du neutron n → p + e− + ν̄

10.7 Désintégration du neutron
n → p + e− + ν̄

voir �gure 17
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Figure 18: Désintégration beta du muon µ− → /νµ + e− + ν̄

10.8 Désintégration beta du muon
µ± → ν̄µ/νµ + e+/e− + ν/ν̄

voir �gure 18
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10.9 Désintégration du pion chargé

Figure 19: Désintégration du pion π− → +µ− + ν̄

π± → µ+/µ− + νµ/ν̄µ

voir �gure 19

11 Conclusion
Dans cette note , nous avons voulu montrer et expliquer avec quelques détails comment la théorie

quantique amenait à des prédictions précise à l'ordre la plus bas dans quelques processus élémen-
taires bien connus. Evidemment, Il exite beaucoup d'autres transitions moins élémentaires qui , par
exemple, mettent en oeuvre l'interaction forte ; les calculs sont alors moins directs et requièrent des
hypothèses supplémentaires. Nous n'avons pas souhaité aborder ces questions en nous limitant aux
transitions les plus proches des lois fondamentales de la théorie uni�ée des interactions faibles et
électromagnétiques.
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12 Annexe 1
La normalisation des états des particules physiques ?

Eléments
• La sommation sur tous les états d'impulsion d'une particule impose d'intégrer dans tout l'espace

p ∫
d4p avec p = (p0, p1, p2, p3)

• Pour une particule physique initiale ou �nale, on se restreint aux états physiques sur leur
"couche de masse" et aux énergies positives

δ(p2 −m2)θ(p0)d
4p

ce qui donne, en intégrant sur p0

d3p

2ωp

ωp =

√
~p 2 + m2

• La normalisation est lièe aux propriétés de commutation (anticommutation) des opérateurs de
création et d'annihilation des états physiques des particules et aux conventions choisies, ici:

< p′ | p > = < 0 | [ap′ , a
+
p ] | 0 >= (2π)3 2ωp δ3 (p− p′)

En utilisant la fermeture des états | x >

∫
< x | p′ >∗< x | p > d3x =

∫
2ωp exp(−i(p− p′)x) d3x

on justi�e pour p = p′

|< x | p >|2 = 2ωp avec
∫

d3x = V
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référence 6

Figure 20: Principe de la di�usion Rutherford (1909)

6tribute to : hyperphysics.phy-astr

http://hyperphysics.phy-astr.gsu.edu/Hbase/rutsca.html�

